Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 115(12): 2133-45, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25053227

RESUMO

Parathyroid Hormone-related Protein (PTHrP) is normally produced in many tissues and is recognized for its endocrine, paracrine, autocrine and intracrine modes of action. PTHrP is also implicated in different types of cancer and its expression correlates with the severity of colon carcinoma. Using the human colon cell line Caco-2 we recently obtained evidence that PTHrP, through a paracrine pathway, exerts a protective effect under apoptotic conditions. However, if exogenous PTHrP is able or not to induce the proliferation of these intestinal tumor cells is not known. We found that PTHrP treatment increases the number of live Caco-2 cells. The hormone induces the phosphorylation and nuclear translocation of ERK 1/2, α p38 MAPK, and Akt, without affecting JNK phosphorylation. In addition, PTHrP-dependent ERK phosphorylation is reverted when PI3K activity was inhibited. Following MAPKs nuclear translocation, the transcription factors ATF-1 and CREB were activated in a biphasic manner. In addition PTHrP induces the translocation into the nucleus of ß-catenin, protein that plays key role in maintaining the growth and proliferation of colorectal cancer, and increases the amount of both positive cell cycle regulators c-Myc and Cyclin D. Studies with ERK1/2, α p38 MAPK, and PI3K specific inhibitors showed that PTHrP regulates Caco-2 cell proliferation via these signaling pathways. In conclusion, the results obtained in this work expand our knowledge on the role of exogenous PTHrP in intestinal tumor cells and identify the signaling pathways that are involved in the mitogenic effect of the hormone on Caco-2 cells.


Assuntos
Proliferação de Células , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia , Transdução de Sinais , Fator 1 Ativador da Transcrição/metabolismo , Células CACO-2 , Núcleo Celular/enzimologia , Neoplasias do Colo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclina D1/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , beta Catenina/metabolismo
2.
Biochem Cell Biol ; 92(4): 305-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25051885

RESUMO

Parathyroid hormone-related peptide (PTHrP) is distributed in most fetal and adult tissues, and its expression correlates with the severity of colon carcinoma. Recently we obtained evidence that in Caco-2 cells, a cell line from human colorectal adenocarcinoma, exogenous PTHrP increases the number of live cells, via ERK1/2, p38 MAPK, and PI3-kinase and induces the expression of cyclin D1, a cell cycle regulatory protein. In this study, we further investigated the role of PTHrP in the regulation of the cell cycle progression in these intestinal cells. Flow cytometry analysis revealed that PTHrP treatment diminishes the number of cells in the G0/G1 phase and increases the number in both S and G2/M phases. The hormone increases the expression of CDK6 and diminishes the amount of negative cell cycle regulators p27Kip1, p15INK4B, and p53. However, PTHrP does not modify the expression of cyclin D3, CDK4, and p16INK4A. In addition, inhibitors of ERK1/2 (PD98059), p38 MAPK (SB203580), and PI3Kinase (LY294002) reversed PTHrP response in Caco-2 cells. Taken together, our results suggest that PTHrP positively modulates cell cycle progression and changes the expression of proteins involved in cell cycle regulation via ERK1/2, p38 MAPK, and PI3K signaling pathways in Caco-2 cells.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia , Células CACO-2 , Ciclina D3/genética , Ciclina D3/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase de Repouso do Ciclo Celular , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-21264782

RESUMO

Metastasis is the rapid proliferation of cancer cells (secondary tumour) at a specific place, generally leading to death. This occurs at anatomical parts providing the necessary environment for vascularity, oxygen and food to hide their actions and trigger the rapid growth of cancer. Prostate and breast cancers, for example, use bone marrow for their proliferation. Bone-supporting cancer cells thus adapt to the environment, mimicking the behaviour of genetic and molecular bone cells. Evidence of this has been given in Cecchini et al. (2005, EAU Update Ser. 3:214-226), providing arguments such as how cancer cell growth is so active during bone reabsorption. This paper simulates metastasis activation in bone marrow. A mathematical model has been developed involving the activation of molecules from bone tissue cells, which are necessary for cancer to proliferate. Here, we simulate two forms of secondary tumour growth depending on the type of metastasis: osteosclerosis and osteolysis.


Assuntos
Neoplasias Ósseas/secundário , Modelos Biológicos , Metástase Neoplásica/patologia , Metástase Neoplásica/fisiopatologia , Engenharia Biomédica , Neoplasias da Medula Óssea/patologia , Neoplasias da Medula Óssea/fisiopatologia , Neoplasias da Medula Óssea/secundário , Neoplasias Ósseas/patologia , Neoplasias Ósseas/fisiopatologia , Remodelação Óssea/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Simulação por Computador , Humanos , Conceitos Matemáticos , Osteólise/patologia , Osteólise/fisiopatologia , Osteosclerose/patologia , Osteosclerose/fisiopatologia , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia , Somatomedinas/fisiologia , Fator de Crescimento Transformador beta/fisiologia
4.
J Theor Biol ; 287: 13-25, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21810429

RESUMO

Developing bone consists of epiphysis, metaphysis and diaphysis. The secondary ossification centre (SOC) appears and grows within the epiphysis, involving two histological stages. Firstly, cartilage canals appear; they carry hypertrophy factors towards the central area of the epiphysis. Canal growth and expansion is modulated by stress on the epiphysis. Secondly, the diffusion of hypertrophy factors causes SOC growth. Hypertrophy is regulated by biological and mechanical factors present within the epiphysis. The finite element method has been used for solving a coupled system of differential equations for modelling these histological stages of epiphyseal development. Cartilage canal spatial-temporal growth patterns were obtained as well as the SOC formation pattern. This model qualitatively agreed with experimental results reported by other authors.


Assuntos
Epífises/crescimento & desenvolvimento , Modelos Biológicos , Animais , Cartilagem Articular/crescimento & desenvolvimento , Condrócitos/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Epífises/fisiologia , Análise de Elementos Finitos , Lâmina de Crescimento/crescimento & desenvolvimento , Humanos , Metaloproteinase 9 da Matriz/fisiologia , Mecanotransdução Celular/fisiologia , Osteogênese/fisiologia , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA