Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 24(2): 203-214, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34564830

RESUMO

Huntington disease (HD) is a single-gene autosomal dominant inherited neurodegenerative disease caused by a polyglutamine expansion of the protein huntingtin (HTT). Huntingtin-associated protein 1 (HAP1) is the first protein identified as an interacting partner of huntingtin, which is directly associated with HD. HAP1 is mainly expressed in the nervous system and is also found in the endocrine system and digestive system, and then involves in the occurrence of the related endocrine diseases, digestive system diseases, and cancer. Understanding the function of HAP1 could help elucidate the pathogenesis that HTT plays in the disease process. Therefore, this article attempts to summarize the latest research progress of the role of HAP1 and its application for diseases in recent years, aiming to clarify the functions of HAP1 and its interacting proteins, and provide new research ideas and new therapeutic targets for the treatment of cancer and related diseases.


Assuntos
Proteína Huntingtina/fisiologia , Doença de Huntington/etiologia , Humanos
2.
Neurobiol Aging ; 55: 1-10, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28391067

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein. In addition to facilitating neurodegeneration, mutant htt is implicated in HD-related alterations of neurotransmission. Previous data showed that htt can modulate N-type voltage-gated Ca2+ channels (Cav2.2), which are essential for presynaptic neurotransmitter release. Thus, to elucidate the mechanism underlying mutant htt-mediated alterations in neurotransmission, we investigated how Cav2.2 is affected by full-length mutant htt expression in a mouse model of HD (BACHD). Our data indicate that young BACHD mice exhibit increased striatal glutamate release, which is reduced to wild type levels following Cav2.2 block. Cav2.2 Ca2+ current-density and plasma membrane expression are increased in BACHD mice, which could account for increased glutamate release. Moreover, mutant htt affects the interaction between Cav2.2 and 2 major channel regulators, namely syntaxin 1A and Gßγ protein. Notably, 12-month old BACHD mice exhibit decreased Cav2.2 cell surface expression and glutamate release, suggesting that Cav2.2 alterations vary according to disease stage.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Proteína Huntingtina/genética , Proteína Huntingtina/fisiologia , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Mutação , Transmissão Sináptica/genética , Animais , Modelos Animais de Doenças , Glutamatos/metabolismo , Camundongos Transgênicos , Neurotransmissores/metabolismo , Sinapses/metabolismo , Sintaxina 1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA