Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
1.
J Gene Med ; 26(10): e3741, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39357835

RESUMO

This study explores the role of the transcription factor FOXM1 in the initiation and progression of oesophageal squamous cell carcinoma (ESCC). Our findings reveal that FOXM1 is highly expressed in ESCC and correlates with the prognosis of the disease. The relationship between FOXM1 and asparagine synthetase (ASNS) is investigated, and the study demonstrates that FOXM1 activates ASNS, impacting the tumour stemness of ESCC. In this study, we reveal the association between FOXM1 and ESCC development, as well as FOXM1's promotion of migration and proliferation in ESCC cells. The study also highlights FOXM1's regulation of ASNS transcription and the functional role of ASNS in ESCC metastasis and growth. Furthermore, the study explores the impact of FOXM1 and ASNS on ESCC stemness and their potential implications for chemotherapy resistance.


Assuntos
Aspartato-Amônia Ligase , Movimento Celular , Proliferação de Células , Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Prognóstico , Animais , Camundongos , Masculino , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida
2.
Oncotarget ; 15: 638-643, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347707

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, Ras-driven sarcomas characterized by loss of the NF1 tumor suppressor gene and hyperactivation of MEK and CDK4/6 kinases. MPNSTs lack effective therapies. We recently demonstrated remarkable efficacy of dual CDK4/6-MEK inhibition in mice with de novo MPNSTs, which was heightened by combined targeting of the immune checkpoint protein, PD-L1. The triple combination therapy targeting CDK4/6, MEK, and PD-L1 led to extended MPNST regression and improved survival, although most tumors eventually acquired drug resistance. Here, we consider the immune activation phenotype caused by CDK4/6-MEK inhibition in MPNSTs that uniquely involved intratumoral plasma cell accumulation. We discuss how PD-L1 and FOXM1, a tumor-promoting transcription factor, are functionally linked and may be key mediators of resistance to CDK4/6-MEK targeted therapies. Finally, the role of FOXM1 in suppressing anti-tumor immunity and potentially thwarting immune-based therapies is considered. We suggest that future therapeutic strategies targeting the oncogenic network of CDK4/6, MEK, PD-L1, and FOXM1 represent exciting future treatment options for MPNST patients.


Assuntos
Antígeno B7-H1 , Quinase 4 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Animais , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Camundongos , Terapia de Alvo Molecular , Neurofibrossarcoma/metabolismo , Neurofibrossarcoma/tratamento farmacológico , Neurofibrossarcoma/patologia , Neurofibrossarcoma/genética , Neoplasias de Bainha Neural/tratamento farmacológico , Neoplasias de Bainha Neural/metabolismo , Neoplasias de Bainha Neural/patologia , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/imunologia
3.
Neoplasma ; 71(4): 333-346, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39267533

RESUMO

Given the infiltrative nature of human glioblastoma (GBM), cocktail drug therapy will remain a vital tool for the treatment of the disease. We investigated fluspirilene, perphenazine, and sulpiride, three classic anti-schizophrenic drugs, as possible anti-GBM agents. The CCK-8 assay demonstrated that fluspirilene possesses the most outstanding anti-GBM effect. We performed molecular mechanisms studies in vitro and an orthotopic xenograft model in mice. Fluspirilene inhibited proliferation and migration in vitro in U87MG and U251 GBM cell lines. Flow cytometry demonstrated that treatment increased apoptosis and cells accumulated in the G2/M phase. Our analysis of publicly available expression data for several cell lines treated with the drug led to the identification of several genes, including KIF20A, that are downregulated by fluspirilene and lead to growth inhibition/apoptosis. We also demonstrated that siRNA knockdown of KIF20A, a member of the kinesin family, attenuated cell proliferation in GBM cells and an orthotopic xenograft model in mice. A regulator of KIF20A, the oncogenic transcription factor FOXM1, was identified using the String database, which harbors protein interaction networks. In fluspirilene-treated cells, FOXM1 protein was decreased, indicating that KIF20A was downregulated in the presence of the drug due to decreased FOXM1 protein. These results demonstrate that fluspirilene is an effective anti-GBM agent that works by suppressing the FOXM1-KIF20A oncogenic axis.


Assuntos
Apoptose , Proliferação de Células , Proteína Forkhead Box M1 , Glioblastoma , Cinesinas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Forkhead Box M1/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Movimento Celular/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
4.
Nat Commun ; 15(1): 8388, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333125

RESUMO

Methionine adenosyltransferase 2 A (MAT2A) and MAT2B are essential for hepatic stellate cells (HSCs) activation. Forkhead box M1 (FOXM1) transgenic mice develop liver inflammation and fibrosis. Here we examine if they crosstalk in male mice. We found FOXM1/MAT2A/2B are upregulated after bile duct ligation (BDL) and carbon tetrachloride (CCl4) treatment in hepatocytes, HSCs and Kupffer cells (KCs). FDI-6, a FOXM1 inhibitor, attenuates the development and reverses the progression of CCl4-induced fibrosis while lowering the expression of FOXM1/MAT2A/2B, which exert reciprocal positive regulation on each other transcriptionally. Knocking down any of them lowers HSCs and KCs activation. Deletion of FOXM1 in hepatocytes, HSCs, and KCs protects from BDL-mediated inflammation and fibrosis comparably. Interestingly, HSCs from Foxm1Hep-/-, hepatocytes from Foxm1HSC-/-, and HSCs and hepatocytes from Foxm1KC-/- have lower FOXM1/MAT2A/2B after BDL. This may be partly due to transfer of extracellular vesicles between different cell types. Altogether, FOXM1/MAT2A/MAT2B axis drives liver inflammation and fibrosis.


Assuntos
Tetracloreto de Carbono , Proteína Forkhead Box M1 , Células Estreladas do Fígado , Hepatócitos , Células de Kupffer , Cirrose Hepática , Metionina Adenosiltransferase , Animais , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Masculino , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Camundongos , Hepatócitos/metabolismo , Hepatócitos/patologia , Células de Kupffer/metabolismo , Tetracloreto de Carbono/toxicidade , Células Estreladas do Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fígado/patologia , Fígado/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Humanos , Ductos Biliares/patologia , Ductos Biliares/metabolismo , Ductos Biliares/cirurgia
5.
Stem Cell Res Ther ; 15(1): 309, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289765

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an age-related disease featured with abnormal fibrotic response and compromised lung function. Cellular senescence is now considered as an essential driving mechanism for IPF. Given the poor knowledge of the mechanisms underpinning IPF progression, understanding the cellular processes and molecular pathways is critical for developing effective therapies of IPF. METHODS: Lung fibrosis was induced using bleomycin in C57BL/6 mice. Cellular senescence was measured by immunofluorescence. The effects of FGF-4 on fibroblast activation markers and signaling molecules were assessed with western blot and qPCR. RESULTS: We demonstrated elevated abundance of senescent mesenchymal stem cells (MSCs) in IPF lung tissues, which was tightly correlated with the severity of pulmonary fibrosis in vivo. In addition, senescent MSCs could effectively induce the phenotype of pulmonary fibrosis both in vitro and in vivo. To further confirm how senescent MSCs regulate IPF progression, we demonstrate that FGF-4 is significantly elevated in senescent MSCs, which can induce the activation of pulmonary fibroblasts. In vitro, FGF-4 can activate Wnt signaling in a FOXM1-dependent manner. Inhibition of FOXM1 via thiostrepton effectively impairs FGF-4-induced activation of pulmonary fibroblast and dramatically suppresses the development of pulmonary fibrosis. CONCLUSION: These findings reveal that FGF-4 plays a crucial role in senescent MSCs-mediated pulmonary fibrogenesis, and suggests that strategies aimed at deletion of senescent MSCs or blocking the FGF-4/FOXM1 axis could be effective in the therapy of IPF.


Assuntos
Senescência Celular , Fator 4 de Crescimento de Fibroblastos , Proteína Forkhead Box M1 , Fibrose Pulmonar Idiopática , Pulmão , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Pulmão/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Fator 4 de Crescimento de Fibroblastos/genética , Humanos , Bleomicina/farmacologia , Fibroblastos/metabolismo , Via de Sinalização Wnt , Masculino
7.
Oncogene ; 43(36): 2722-2736, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112519

RESUMO

Breast cancer (BC) remains the second leading cause of cancer-related mortalities in women. Resistance to hormone therapies such as tamoxifen, an estrogen receptor (ER) inhibitor, is a major hurdle in the treatment of BC. Enhancer of zeste homolog 2 (EZH2), the methyltransferase component of the Polycomb repressive complex 2 (PRC2), has been implicated in tamoxifen resistance. Evidence suggests that EZH2 often functions noncanonically, in a methyltransferase-independent manner, as a transcription coactivator through interacting with oncogenic transcription factors. Unlike methyltransferase inhibitors, proteolysis targeting chimeras (PROTAC) can suppress both activating and repressive functions of EZH2. Here, we find that EZH2 PROTACs, MS177 and MS8815, effectively inhibited the growth of BC cells, including those with acquired tamoxifen resistance, to a much greater degree when compared to methyltransferase inhibitors. Mechanistically, EZH2 associates with forkhead box M1 (FOXM1) and binds to the promoters of FOXM1 target genes. EZH2 PROTACs induce degradation of both EZH2 and FOXM1, leading to reduced expression of target genes involved in cell cycle progression and tamoxifen resistance. Together, this study supports that EZH2-targeted PROTACs represent a promising avenue of research for the future treatment of BC, including in the setting of tamoxifen resistance.


Assuntos
Neoplasias da Mama , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Proteína Forkhead Box M1 , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Proteólise/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tamoxifeno/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Camundongos , Quimera de Direcionamento de Proteólise
8.
Crit Rev Eukaryot Gene Expr ; 34(8): 35-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39180206

RESUMO

Foxm1 functions as an oncogene in multiple human malignancies, including cervical cancer. However, the potential of Foxm1 in the tumor microenvironment (TME) is still unknown. The purpose of the present study is to investigate the role of Foxm1 in CD8+ T cell anti-tumor immunity. RT-qPCR is conducted to calculate mRNA levels. JASPAR is used to predict the binding sites between Foxm1 and NLRP3. ChIP assay is performed to verify the occupancy of Foxm1 on the promoter of NLRP3. Modulatory relationship between Foxm1 and NLRP3 is verified by luciferase assay. In vivo assays are conducted to further verify the role of Foxm1/NLRP3 axis in cervical cancer. HE staining assay is applied for histological analysis. Flow cytometry is conducted to determine the functions of immune cells. We found that Foxm1 knockdown decreases tumor burden and suppresses tumor growth of cervical cancer. Foxm1 knock-down promotes the infiltration of CD8+ T cells. Foxm1 deficiency inhibits the exhaustion of CD8+ T cells and facilitates the maintenance of CD8+ effector and stem-like T cells. Moreover, Foxm1 transcriptionally inactivates NLRP3 and suppresses the expression of innate cytokines IL-1ß and IL-18. However, inhibition of NLRP3 inflammasome or neutralizing IL-1ß and IL-18 inhibits anti-tumor immunity and promoted tumor growth in Foxm1 deficiency in CD8+ T cells. In summary, targeting Foxm1 mediates the activation of NLRP3 inflammasome and stimulates CD8+ T cell anti-tumor immunity in cervical cancer.


Assuntos
Proteína Forkhead Box M1 , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Microambiente Tumoral , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica , Inflamassomos/metabolismo , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia
9.
Theriogenology ; 229: 66-74, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39163804

RESUMO

Fertilization capacity and embryo survival rate are decreased in postovulatory aging oocytes, which results in a reduced reproductive rate in female animals. However, the key regulatory genes and related regulatory mechanisms involved in the process of postovulatory aging in oocytes remain unclear. In this study, RNA-Seq revealed that 3237 genes were differentially expressed in porcine oocytes between the MII and aging stages (MII + 24 h). The expression level of FOXM1 was increased at the aging stage, and FOXM1 was also observed to be enriched in many key biological processes, such as cell senescence, response to oxidative stress, and transcription, during porcine oocyte aging. Previous studies have shown that FOXM1 is involved in the regulation of various biological processes, such as oxidative stress, DNA damage repair, mitochondrial function, and cellular senescence, which suggests that FOXM1 may play a crucial role in the process of postovulatory aging. Therefore, in this study, we investigated the effects and mechanisms of FOXM1 on oxidative stress, mitochondrial function, DNA damage, and apoptosis during oocyte aging. Our study revealed that aging oocytes exhibited significantly increased ROS levels and significantly decreased GSH, SOD, T-AOC, and CAT levels than did oocytes at the MII stage and that FOXM1 inhibition exacerbated the changes in these levels in aging oocytes. In addition, FOXM1 inhibition increased the levels of DNA damage, apoptosis, and cell senescence in aging oocytes. A p21 inhibitor alleviated the effects of FOXM1 inhibition on oxidative stress, mitochondrial function, and DNA damage and thus alleviated the degree of senescence in aging oocytes. These results indicate that FOXM1 plays a crucial role in porcine oocyte aging. This study contributes to the understanding of the function and mechanism of FOXM1 during porcine oocyte aging and provides a theoretical basis for preventing oocyte aging and optimizing conditions for the in vitro culture of oocytes.


Assuntos
Senescência Celular , Dano ao DNA , Proteína Forkhead Box M1 , Mitocôndrias , Oócitos , Estresse Oxidativo , Animais , Oócitos/fisiologia , Oócitos/metabolismo , Suínos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Mitocôndrias/metabolismo , Feminino , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação da Expressão Gênica
10.
Mol Biol Rep ; 51(1): 927, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168955

RESUMO

BACKGROUND: Thiostrepton (TST) is a known inhibitor of the transcription factor Forkhead box M1 (FoxM1) and inducer of heat shock response (HSR) and autophagy. TST thus may be one potential candidate of anticancer drugs for combination chemotherapy. METHODS AND RESULTS: Immunofluorescence staining of mitotic spindles and flow cytometry analysis revealed that TST induces mitotic spindle abnormalities, mitotic arrest, and apoptotic cell death in the MDA-MB-231 triple-negative breast cancer cell line. Interestingly, overexpression or depletion of FoxM1 in MDA-MB-231 cells did not affect TST induction of spindle abnormalities; however, TST-induced spindle defects were enhanced by inhibition of HSP70 or autophagy. Moreover, TST exhibited low affinity for tubulin and only slightly inhibited in vitro tubulin polymerization, but it severely impeded tubulin polymerization and destabilized microtubules in arrested mitotic MDA-MB-231 cells. Additionally, TST significantly enhanced Taxol cytotoxicity. TST also caused cytotoxicity and spindle abnormalities in a Taxol-resistant cell line, MDA-MB-231-T4R. CONCLUSIONS: These results suggest that, in addition to inhibiting FoxM1, TST may induce proteotoxicity and autophagy to disrupt cellular tubulin polymerization, and this mechanism might account for its antimitotic effects, enhancement of Taxol anticancer effects, and ability to overcome Taxol resistance in MDA-MB-231 cells. These data further imply that TST may be useful to improve the therapeutic efficacy of Taxol.


Assuntos
Autofagia , Proteína Forkhead Box M1 , Paclitaxel , Fuso Acromático , Tioestreptona , Tubulina (Proteína) , Humanos , Paclitaxel/farmacologia , Tioestreptona/farmacologia , Linhagem Celular Tumoral , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Proteína Forkhead Box M1/metabolismo , Autofagia/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Sinergismo Farmacológico , Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Células MDA-MB-231
11.
Cell Death Differ ; 31(10): 1285-1301, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39060421

RESUMO

The transcription factor FOXM1, which plays critical roles in cell cycle progression and tumorigenesis, is highly expressed in rapidly proliferating cells and various tumor tissues, and high FOXM1 expression is related to a poor prognosis. However, the mechanism responsible for FOXM1 dysregulation is not fully understood. Here, we show that ABL1, a nonreceptor tyrosine kinase, contributes to the high expression of FOXM1 and FOXM1-dependent tumor development. Mechanistically, ABL1 directly binds FOXM1 and mediates FOXM1 phosphorylation at multiple tyrosine (Y) residues. Among these phospho-Y sites, pY575 is indispensable for FOXM1 stability as phosphorylation at this site protects FOXM1 from ubiquitin-proteasomal degradation. The interaction of FOXM1 with CDH1, a coactivator of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which is responsible for FOXM1 degradation, is significantly inhibited by Y575 phosphorylation. The phospho-deficient FOXM1(Y575F) mutant exhibited increased ubiquitination, a shortened half-life, and consequently a substantially decreased abundance. Compared to wild-type cells, a homozygous Cr-Y575F cell line expressing endogenous FOXM1(Y575F) that was generated by CRISPR/Cas9 showed obviously delayed mitosis progression, impeded colony formation and inhibited xenotransplanted tumor growth. Overall, our study demonstrates that ABL1 kinase is involved in high FOXM1 expression, providing clear evidence that ABL1 may act as a therapeutic target for the treatment of tumors with high FOXM1 expression.


Assuntos
Proteína Forkhead Box M1 , Proteínas Proto-Oncogênicas c-abl , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Humanos , Fosforilação , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Animais , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Estabilidade Proteica , Camundongos Nus , Ubiquitinação , Proliferação de Células
12.
Cell Biochem Biophys ; 82(3): 2767-2785, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031247

RESUMO

Hepatocellular carcinoma (HCC) presents significant challenges in treatment and prognosis because of its aggressive nature and high metastatic potential. This study aims to investigate the role of the hexosamine biosynthesis pathway (HBP) and its association with HCC progression and prognosis. We identified SPP1 and FOXM1 as hub genes within the HBP pathway, showing their correlation with poor prognosis and late-stage progression. In addition, the analysis uncovered the complex participation of the HBP pathway in nutrients and oxygen reactions, PI3K-AKT signaling, AMPK activation, and angiogenesis regulation. The disruption of these pathways is pivotal in influencing the growth and progression of HCC. Targeting the HBP presents a promising therapeutic approach to modulate the tumor microenvironment, thereby enhancing the efficacy of immunotherapy. In addition, FOXM1 was identified as the HBP pathway regulator, influencing cellular O-GlcNAcylation level and VEGF secretion, thereby promoting angiogenesis in HCC. Inhibition of O-GlcNAcylation significantly hindered angiogenesis, which is suggested as a potential avenue for therapeutic intervention. Our research demonstrates the practicality of using the HBP-related gene as a prognostic marker in liver cancer patients and suggests targeting FOXM1 as a novel avenue for personalized therapy.


Assuntos
Carcinoma Hepatocelular , Proteína Forkhead Box M1 , Hexosaminas , Neoplasias Hepáticas , Neovascularização Patológica , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Hexosaminas/biossíntese , Hexosaminas/metabolismo , Neovascularização Patológica/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Transdução de Sinais , Prognóstico , Angiogênese
13.
Endocrinology ; 165(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058910

RESUMO

Cushing disease is a life-threatening disorder caused by autonomous secretion of ACTH from pituitary neuroendocrine tumors (PitNETs). Few drugs are indicated for inoperative Cushing disease, in particular that due to aggressive PitNETs. To explore agents that regulate ACTH-secreting PitNETs, we conducted high-throughput screening (HTS) using AtT-20, a murine pituitary tumor cell line characterized by ACTH secretion. For the HTS, we constructed a live cell-based ACTH reporter assay for high-throughput evaluation of ACTH changes. This assay was based on HEK293T cells overexpressing components of the ACTH receptor and a fluorescent cAMP biosensor, with high-throughput acquisition of fluorescence images. We treated AtT-20 cells with compounds and assessed ACTH concentrations in the conditioned media using the reporter assay. Of 2480 screened bioactive compounds, over 50% inhibition of ACTH secreted from AtT-20 cells was seen with 84 compounds at 10 µM and 20 compounds at 1 µM. Among these hit compounds, we focused on thiostrepton (TS) and determined its antitumor effects in both in vitro and in vivo xenograft models of Cushing disease. Transcriptome and flow cytometry analyses revealed that TS administration induced AtT-20 cell cycle arrest at the G2/M phase, which was mediated by FOXM1-independent mechanisms including downregulation of cyclins. Simultaneous TS administration with a cyclin-dependent kinase 4/6 inhibitor that affected the cell cycle at the G0/1 phase showed cooperative antitumor effects. Thus, TS is a promising therapeutic agent for Cushing disease. Our list of hit compounds and new mechanistic insights into TS effects serve as a valuable foundation for future research.


Assuntos
Hormônio Adrenocorticotrópico , Ensaios de Triagem em Larga Escala , Hipersecreção Hipofisária de ACTH , Tioestreptona , Animais , Humanos , Ensaios de Triagem em Larga Escala/métodos , Camundongos , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Hormônio Adrenocorticotrópico/metabolismo , Tioestreptona/farmacologia , Tioestreptona/uso terapêutico , Linhagem Celular Tumoral , Ciclo Celular/efeitos dos fármacos , Células HEK293 , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética
14.
Cell Death Dis ; 15(7): 508, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019868

RESUMO

Epidermal stem cells orchestrate epidermal renewal and timely wound repair through a tight regulation of self-renewal, proliferation, and differentiation. In culture, human epidermal stem cells generate a clonal type referred to as holoclone, which give rise to transient amplifying progenitors (meroclone and paraclone-forming cells) eventually generating terminally differentiated cells. Leveraging single-cell transcriptomic data, we explored the FOXM1-dependent biochemical signals controlling self-renewal and differentiation in epidermal stem cells aimed at improving regenerative medicine applications. We report that the expression of H1 linker histone subtypes decrease during serial cultivation. At clonal level we observed that H1B is the most expressed isoform, particularly in epidermal stem cells, as compared to transient amplifying progenitors. Indeed, its expression decreases in primary epithelial culture where stem cells are exhausted due to FOXM1 downregulation. Conversely, H1B expression increases when the stem cells compartment is sustained by enforced FOXM1 expression, both in primary epithelial cultures derived from healthy donors and JEB patient. Moreover, we demonstrated that FOXM1 binds the promotorial region of H1B, hence regulates its expression. We also show that H1B is bound to the promotorial region of differentiation-related genes and negatively regulates their expression in epidermal stem cells. We propose a novel mechanism wherein the H1B acts downstream of FOXM1, contributing to the fine interplay between self-renewal and differentiation in human epidermal stem cells. These findings further define the networks that sustain self-renewal along the previously identified YAP-FOXM1 axis.


Assuntos
Diferenciação Celular , Células Epidérmicas , Proteína Forkhead Box M1 , Histonas , Células-Tronco , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Células Epidérmicas/metabolismo , Células Epidérmicas/citologia , Histonas/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proliferação de Células , Epiderme/metabolismo , Células Cultivadas
15.
BMC Cancer ; 24(1): 848, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020302

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play vital regulatory functions in non-small cell lung cancer (NSCLC). Cisplatin (DDP) resistance has significantly decreased the effectiveness of DDP-based chemotherapy in NSCLC patients. This study aimed to investigate the effects of SH3PXD2A antisense RNA 1 (SH3PXD2A-AS1) on DDP resistance in NSCLC. METHODS: Proliferation and apoptosis of DDP-resistant NSCLC cells were detected using cell counting kit-8 and flow cytometry assays. The interaction between SH3PXD2A-AS1 and sirtuin 7 (SIRT7) was assessed using co-immunoprecipitation (Co-IP), RNA pull-down, RNA immunoprecipitation (RIP), RNA fluorescence in situ hybridization, and immunofluorescence assays, while succinylation (SUCC) of Forkhead Box M1 (FOXM1) was analyzed by IP and Western blot assays. The role of SH3PXD2A-AS1 in vivo was explored using a xenografted tumor model. RESULTS: Expression of SH3PXD2A-AS1 was found elevated in DDP-resistant NSCLC cells, while it's knocking down translated into suppression of cell viability and promotion of apoptosis. Moreover, silencing of SH3PXD2A-AS1 resulted in decreased FOXM1 protein level and enhanced FOXM1-SUCC protein level. The SIRT7 was found to interact with FOXM1, translating into inhibition of FOXM1 SUCC at the K259 site in human embryonic kidney (HEK)-293T cells. Overexpressing of SIRT7 reversed the increase of FOXM1-SUCC protein level and apoptosis, and the decrease of cell viability induced by silencing of SH3PXD2A-AS1. In tumor-bearing mice, SH3PXD2A-AS1 inhibition suppressed tumor growth and the protein levels of Ki67, SIRT7, and FOXM1. CONCLUSION: SH3PXD2A-AS1 promoted DDP resistance in NSCLC cells by regulating FOXM1 SUCC via SIRT7, offering a promising therapeutic approach for NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Neoplasias Pulmonares , RNA Longo não Codificante , Sirtuínas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Sirtuínas/metabolismo , Sirtuínas/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
16.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G284-G294, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953837

RESUMO

Metabolic reprogramming is recognized as a hallmark of cancer, enabling cancer cells to acquire essential biomolecules for cell growth, often characterized by upregulated glycolysis and/or fatty acid synthesis-related genes. The transcription factor forkhead box M1 (FOXM1) has been implicated in various cancers, contributing significantly to their development, including colorectal cancer (CRC), a major global health concern. Despite FOXM1's established role in cancer, its specific involvement in the Warburg effect and fatty acid biosynthesis in CRC remains unclear. We analyzed The Cancer Genome Atlas (TCGA) Colonic Adenocarcinoma and Rectal Adenocarcinoma (COADREAD) datasets to derive the correlation of the expression levels between FOXM1 and multiple genes and the survival prognosis based on FOXM1 expression. Using two human CRC cell lines, HT29 and HCT116, we conducted RNAi or plasmid transfection procedures, followed by a series of assays, including RNA extraction, quantitative real-time polymerase chain reaction, Western blot analysis, cell metabolic assay, glucose uptake assay, Oil Red O staining, cell viability assay, and immunofluorescence analysis. Higher expression levels of FOXM1 correlated with a poorer survival prognosis, and the expression of FOXM1 was positively correlated with glycolysis-related genes SLC2A1 and LDHA, de novo lipogenesis-related genes ACACA and FASN, and MYC. FOXM1 appeared to modulate AKT/mammalian target of rapamycin (mTOR) signaling, the expression of c-Myc, proteins related to glycolysis and fatty acid biosynthesis, and glucose uptake, as well as extracellular acidification rate in HT29 and HCT116 cells. In summary, FOXM1 plays a regulatory role in glycolysis, fatty acid biosynthesis, and cellular energy consumption, thereby influencing CRC cell growth and patient prognosis.NEW & NOTEWORTHY Transcription factor forkhead box M1 (FOXM1) regulates glycolysis, fatty acid biosynthesis, and cellular energy consumption, which, together, controls cell growth and patient prognosis in colorectal cancer (CRC).


Assuntos
Neoplasias Colorretais , Proteína Forkhead Box M1 , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HT29 , Células HCT116 , Glicólise , Regulação Neoplásica da Expressão Gênica , Efeito Warburg em Oncologia , Transdução de Sinais , Proliferação de Células , Reprogramação Celular/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reprogramação Metabólica
17.
Hum Genet ; 143(8): 939-953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969938

RESUMO

Unilateral moyamoya disease (MMD) represents a distinct subtype characterised by occlusive changes in the circle of Willis and abnormal vascular network formation. However, the aetiology and pathogenesis of unilateral MMD remain unclear. In this study, genetic screening of a family with unilateral MMD using whole-genome sequencing helped identify the c.1205 C > A variant of FOXM1, which encodes the transcription factor FOXM1 and plays a crucial role in angiogenesis and cell proliferation, as a susceptibility gene mutation. We demonstrated that this mutation significantly attenuated the proangiogenic effects of FOXM1 in human brain endothelial cells, leading to reduced proliferation, migration, and tube formation. Furthermore, FOXM1 c.1205 C > A results in increased apoptosis of human brain endothelial cells, mediated by the downregulation of the transcription of the apoptosis-inhibiting protein BCL2. These results suggest a potential role for the FOXM1 c.1205 C > A mutation in the pathogenesis of unilateral MMD and may contribute to the understanding and treatment of this condition.


Assuntos
Angiogênese , Encéfalo , Proliferação de Células , Células Endoteliais , Proteína Forkhead Box M1 , Doença de Moyamoya , Mutação , Adulto , Feminino , Humanos , Masculino , Angiogênese/fisiopatologia , Apoptose/genética , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/irrigação sanguínea , Movimento Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Predisposição Genética para Doença , Doença de Moyamoya/genética , Doença de Moyamoya/patologia , Linhagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
18.
Cell Biol Toxicol ; 40(1): 58, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060874

RESUMO

OBJECTIVE: Multiple myeloma (MM) is a deadly plasma cell malignancy with elusive pathogenesis. N6-methyladenosine (m6A) is critically engaged in hematological malignancies. The function of KIAA1429, the largest component of methyltransferases, is unknown. This study delved into the mechanism of KIAA1429 in MM, hoping to offer novel targets for MM therapy. METHODS: Bone marrow samples were attained from 55 MM patients and 15 controls. KIAA1429, YTHDF1, and FOXM1 mRNA levels were detected and their correlation was analyzed. Cell viability, proliferation, cell cycle, and apoptosis were testified. Glycolysis-enhancing genes (HK2, ENO1, and LDHA), lactate production, and glucose uptake were evaluated. The interaction between FOXM1 mRNA and YTHDF1, m6A-modified FOXM1 level, and FOXM1 stability were assayed. A transplantation tumor model was built to confirm the mechanism of KIAA1429. RESULTS: KIAA1429 was at high levels in MM patients and MM cells and linked to poor prognoses. KIAA1429 knockdown restrained MM cell viability, and proliferation, arrested G0/G1 phase, and increased apoptosis. KIAA1429 mRNA in plasma cells from MM patients was positively linked with to glycolysis-enhancing genes. The levels of glycolysis-enhancing genes, glucose uptake, and lactate production were repressed after KIAA1429 knockdown, along with reduced FOXM1 levels and stability. YTHDF1 recognized KIAA1429-methylated FOXM1 mRNA and raised FOXM1 stability. Knockdown of YTHDF1 curbed aerobic glycolysis and malignant behaviors in MM cells, which was nullified by FOXM1 overexpression. KIAA1429 knockdown also inhibited tumor growth in animal experiments. CONCLUSION: KIAA1429 knockdown reduces FOXM1 expression through YTHDF1-mediated m6A modification, thus inhibiting MM aerobic glycolysis and tumorigenesis.


Assuntos
Carcinogênese , Proliferação de Células , Proteína Forkhead Box M1 , Glicólise , Mieloma Múltiplo , Proteínas de Ligação a RNA , Humanos , Glicólise/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Animais , Proliferação de Células/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Masculino , Feminino , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Camundongos Nus , Camundongos Endogâmicos BALB C
20.
Cancer Med ; 13(13): e7420, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967523

RESUMO

INTRODUCTION: Lung adenocarcinoma (LUAD) is the most common malignant tumor in respiratory system. Methyltransferase-like 1 (METTL1) is a driver of m7G modification in mRNA. This study aimed to demonstrate the role of METTL1 in the proliferation, invasion and Gefitinib-resistance of LUAD. METHODS: Public datasets were downloaded from the Gene Expression Profiling Interactive Analysis (GEPIA) and GSE31210 datasets. Malignant tumor phenotypes were tested in vitro and in vivo through biological function assays and nude mouse with xenograft tumors. RNA immunoprecipitation assays were conducted to determine the interaction between METTL1 protein and FOXM1 mRNA. Public transcriptional database, Chromatin immunoprecipitation and luciferase report assays were conducted to detect the downstream target of a transcriptional factor FOXM1. Half maximal inhibitory concentration (IC50) was calculated to evaluate the sensitivity to Gefitinib in LUAD cells. RESULTS: The results showed that METTL1 was upregulated in LUAD, and the high expression of METTL1 was associated with unfavorable prognosis. Through the m7G-dependent manner, METTL1 improved the RNA stability of FOXM1, leading to the up-regulation of FOXM1. FOXM1 transcriptionally suppressed PTPN13 expression. The METTL1/FOXM1/PTPN13 axis reduced the sensitivity of LUAD cells to Gefitinib. Taken together, our data suggested that METTL1 plays oncogenic role in LUAD through inducing the m7G modification of FOXM1, therefore METTL1 probably is a new potential therapeutic target to counteract Gefitinib resistance in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Gefitinibe , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Metiltransferases , Camundongos Nus , Humanos , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Antitumorais Modelo de Xenoenxerto , Progressão da Doença , Feminino , Camundongos Endogâmicos BALB C , Prognóstico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA