Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.426
Filtrar
1.
Biomaterials ; 313: 122778, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39213978

RESUMO

Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.


Assuntos
Clorofilídeos , Indóis , Platina , Polímeros , Porfirinas , Neoplasias da Glândula Tireoide , Microambiente Tumoral , Terapia por Ultrassom , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Indóis/química , Terapia por Ultrassom/métodos , Porfirinas/química , Porfirinas/farmacologia , Polímeros/química , Animais , Platina/química , Platina/uso terapêutico , Platina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Apoptose/efeitos dos fármacos , Nanopartículas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Quinolinas/farmacologia , Quinolinas/química , Camundongos Nus , Portadores de Fármacos/química
2.
J Environ Sci (China) ; 148: 57-68, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095190

RESUMO

The expandable graphite (EG) modified TiO2 nanocomposites were prepared by the high shear method using the TiO2 nanoparticles (NPs) and EG as precursors, in which the amount of EG doped in TiO2 was 10 wt.%. Followed by the impregnation method, adjusting the pH of the solution to 10, and using the electrostatic adsorption to achieve spatial confinement, the Pt elements were mainly distributed on the exposed TiO2, thus generating the Pt/10EG-TiO2-10 catalyst. The best CO oxidation activity with the excellent resistance to H2O and SO2 was obtained over the Pt/10EG-TiO2-10 catalyst: CO conversion after 36 hr of the reaction was ca. 85% under the harsh condition of 10 vol.% H2O and 100 ppm SO2 at a high gaseous hourly space velocity (GHSV) of 400,000 hr-1. Physicochemical properties of the catalysts were characterized by various techniques. The results showed that the electrostatic adsorption, which riveted the Pt elements mainly on the exposed TiO2 of the support surface, reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs, hence significantly improving CO oxidation activity over the Pt/10EG-TiO2-10 catalyst. The 10 wt.% EG doped in TiO2 caused the TiO2 support to form a more hydrophobic surface, which reduced the adsorption of H2O and SO2 on the catalyst, greatly inhibited deposition of the TiOSO4 and formation of the PtSO4 species as well as suppressed the oxidation of SO2, thus resulting in an improvement in the resistance to H2O and SO2 of the Pt/10EG-TiO2-10 catalyst.


Assuntos
Grafite , Oxirredução , Platina , Dióxido de Enxofre , Titânio , Titânio/química , Grafite/química , Dióxido de Enxofre/química , Platina/química , Catálise , Monóxido de Carbono/química , Água/química , Poluentes Atmosféricos/química , Modelos Químicos
3.
J Environ Sci (China) ; 150: 490-502, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306423

RESUMO

The removal of ammonia nitrogen (NH4+-N) and bacteria from aquaculture wastewater holds paramount ecological and production significance. In this study, Pt/RuO2/g-C3N4 photocatalysts were prepared by depositing Pt and RuO2 particles onto g-C3N4. The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectrometer (UV-vis DRS). The photocatalysts were then applied to the removal of both NH4+-N and bacteria from simulated mariculture wastewater. The results clarified that the removals of both NH4+-N and bacteria were in the sequence of g-C3N4 < RuO2/g-C3N4 < Pt/g-C3N4 < Pt/RuO2/g-C3N4. This magnificent photocatalytic ability of Pt/RuO2/g-C3N4 can be interpreted by the transfer of holes from g-C3N4 to RuO2 to facilitate the in situ generation of HClO from Cl- in wastewater, while Pt extracts photogenerated electrons for H2 formation to enhance the reaction. The removal of NH4+-N and disinfection effect were more pronounced in simulated seawater than in pure water. The removal efficiency of NH4+-N increases with an increase in pH of wastewater, while the bactericidal effect was more significant under a lower pH in a pH range of 6-9. In actual seawater aquaculture wastewater, Pt/RuO2/g-C3N4 still exhibits effective removal efficiency of NH4+-N and bactericidal performance under sunlight. This study provides an alternative avenue for removement of NH4+-N and bacteria from saline waters under sunlight.


Assuntos
Amônia , Bactérias , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Amônia/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Rutênio/química , Luz , Aquicultura/métodos , Platina/química , Catálise , Grafite , Compostos de Nitrogênio
4.
Mikrochim Acta ; 191(10): 593, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39261334

RESUMO

Exosomes, extracellular vesicles (EVs) with an average size of 50-150 nm, transfer various biomolecules and exchange signaling molecules between cells in a paracrine manner. Molecular investigations have revealed that EVs can reflect real-time metabolic changes in normal- and cancer-origin cells and thus harbor valid diagnostic biomarkers. Despite these advantages, the detection of low concentrations of cancer cell EVs in biological fluids is still a great challenge. Here, a new electrochemical Exosensor based on platinum-perovskite is developed for the direct detection of EVs using a biotinylated monoclonal CD63 antibody as a capture element. The label-free method exhibited higher sensitivity with a lower limit of quantification of 2000 EVs/µL with a dynamic linear range (LDR) of 2000 to 14,000 EVs/µL compared with other available methods. To enhance the selectivity of detection, EVs were simultaneously sandwiched between secondary antibodies of PSA (prostate-specific antigen), as an FDA-approved prostate cancer biomarker. Data indicated that this Exosensor can distinguish normal and cancer EVs in samples from healthy individuals and prostate cancer patients. Taken together, this technology offers a unique approach to label-free quantification of EVs and cancer detection in the early stages.


Assuntos
Nanocompostos , Platina , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Platina/química , Nanocompostos/química , Técnicas Biossensoriais/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Exossomos/química , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/imunologia , Limite de Detecção , Tetraspanina 30/metabolismo
5.
Taiwan J Obstet Gynecol ; 63(5): 709-716, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39266152

RESUMO

OBJECTIVE: This study presents the development and validation of a nomogram aimed at predicting platinum-sensitivity and survival outcomes in women with advanced epithelial ovarian cancer (EOC). MATERIALS AND METHODS: Data from a retrospective cohort of women diagnosed with stage III/IV EOC between Jan 2011 and Dec 2021 treated at our institute were collected. Clinical and pathological characteristics were analyzed using logistic regression analysis to identify independent predictors of platinum-sensitivity. Impact on progression-free (PFS) and overall survival (OS) was determined by Kaplan-Meier and Cox regression analysis. A nomogram was constructed based on the significant predictors, and its performance was evaluated using calibration, discrimination, and validation analyses. RESULTS: Of the 210 patients, 139 (66.19%) had platinum-sensitive and 71 (33.81%) were platinum-resistant disease. On multivariate analysis, platinum-resistance correlated with neoadjuvant chemotherapy (OR 2.15; 95% CI 1.10-4.21), clear cell/mucinous histology (OR 5.04; 95% CI 2.20-11.54), and sub-optimal debulking status (OR 3.37; 95% CI 1.44-7.91). Median PFS and OS were also significantly shorter for patients with neoadjuvant chemotherapy (23 vs. 10 months and 69 vs. 29 months, respectively), clear cell/mucinous histology (15 vs. 3 months and 63 vs. 11 months, respectively), and suboptimal debulking (26 vs. 5 months and 78 vs. 24 months, respectively). The nomogram demonstrated good predictive accuracy for platinum-sensitivity in the cohort as indicated by high concordance index of 0.745. Calibration plots showed excellent agreement and internal validation further confirmed the reliability of the nomogram's performance. CONCLUSION: A novel predictive nomogram based on type of initial treatment, histology, and debulking status was developed, which provides a friendly and reliable tool for predicting platinum-sensitivity and survival outcomes in women with advanced EOC. Its application may assist clinicians in individualizing treatment decisions.


Assuntos
Carcinoma Epitelial do Ovário , Resistencia a Medicamentos Antineoplásicos , Nomogramas , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/mortalidade , Carcinoma Epitelial do Ovário/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Idoso , Adulto , Estadiamento de Neoplasias , Terapia Neoadjuvante/métodos , Procedimentos Cirúrgicos de Citorredução , Intervalo Livre de Progressão , Platina/uso terapêutico , Antineoplásicos/uso terapêutico , Estimativa de Kaplan-Meier
6.
Int J Nanomedicine ; 19: 9727-9739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315364

RESUMO

Introduction: Photodynamic therapy (PDT) has attracted increasing attention in the clinical treatment of epidermal and luminal tumors. However, the PDT efficacy in practice is severely impeded by tumor hypoxia and the adverse factors associated with hydrophobic photosensitizers (PSs), including low delivery capacity, poor photoactivity and limited ROS diffusion. In this study, Pt nanozymes decorated two-dimensional (2D) porphyrin metal-organic framework (MOF) nanosheets (PMOF@HA) were fabricated and investigated to conquer the obstacles of PDT against hypoxic tumors. Materials and Methods: PMOF@HA was synthesized by the coordination of transition metal iron (Zr4+) and PS (TCPP), in situ generation of Pt nanozyme and surface modification with hyaluronic acid (HA). The abilities of hypoxic relief and ROS generation were evaluated by detecting the changes of O2 and 1O2 concentration. The cellular uptake was investigated using flow cytometry and confocal laser scanning microscopy. The SMMC-7721 cells and the subcutaneous tumor-bearing mice were used to demonstrate the PDT efficacy of PMOF@HA in vitro and in vivo, respectively. Results: Benefiting from the 2D structure and inherent properties of MOF materials, the prepared PMOF@HA could not only serve as nano-PS with high PS loading but also ensure the rational distance between PS molecules to avoid aggregation-induced quenching, enhance the photosensitive activity and promote the rapid diffusion of generated radical oxide species (ROS). Meanwhile, Pt nanozymes with catalase-like activity effectively catalyzed intratumoral overproduced H2O2 into O2 to alleviate tumor hypoxia. Additionally, PMOF@HA, with the help of externally coated HA, significantly improved the stability and increased the cell uptake by CD44 overexpressed tumor cells to strengthen O2 self-supply and PDT efficacy. Conclusion: This study provided a new strategy of integrating 2D porphyrin MOF nanosheets with nanozymes to conquer the obstacles of PDT against hypoxic tumors.


Assuntos
Ácido Hialurônico , Estruturas Metalorgânicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Hipóxia Tumoral , Fotoquimioterapia/métodos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/administração & dosagem , Linhagem Celular Tumoral , Humanos , Hipóxia Tumoral/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/farmacocinética , Porfirinas/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Platina/química , Platina/farmacologia , Nanoestruturas/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos
7.
Biomed Phys Eng Express ; 10(6)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39260382

RESUMO

This study describes the in-vitro cytotoxic effects of PEG-400 (Polyethylene glycol-400)-capped platinum nanoparticles (PEGylated Pt NPs) on both normal and cancer cell lines. Structural characterization was carried out using x-ray diffraction and Raman spectroscopy with an average crystallite size 5.7 nm, and morphological assessment using Scanning electron microscopy (SEM) revealed the presence of spherical platinum nanoparticles. The results of energy-dispersive x-ray spectroscopy (EDX) showed a higher percentage fraction of platinum content by weight, along with carbon and oxygen, which are expected from the capping agent, confirming the purity of the platinum sample. The dynamic light scattering experiment revealed an average hydrodynamic diameter of 353.6 nm for the PEGylated Pt NPs. The cytotoxicity profile of PEGylated Pt NPs was assessed on a normal cell line (L929) and a breast cancer cell line (MCF-7) using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results revealed an IC50of 79.18 µg ml-1on the cancer cell line and non-toxic behaviour on the normal cell line. In the dual staining apoptosis assay, it was observed that the mortality of cells cultured in conjunction with platinum nanoparticles intensified and the proliferative activity of MCF-7 cells gradually diminished over time in correlation with the increasing concentration of the PEGylated Pt NPs sample. Thein vitroDCFH-DA assay for oxidative stress assessment in nanoparticle-treated cells unveiled the mechanistic background of the anticancer activity of PEGylated platinum nanoparticles as ROS-assisted mitochondrial dysfunction.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Nanopartículas Metálicas , Platina , Polietilenoglicóis , Humanos , Polietilenoglicóis/química , Platina/química , Platina/farmacologia , Nanopartículas Metálicas/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Feminino , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Difração de Raios X , Análise Espectral Raman/métodos , Tamanho da Partícula , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Microscopia Eletrônica de Varredura
8.
Medicine (Baltimore) ; 103(39): e39845, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331917

RESUMO

The combination of chemotherapy and photodynamic therapy (PDT), enabled by core-shell nano-platforms, is a promising method to improve cancer therapy by overcoming hypoxia and boosting drug penetration in breast tumor. Core-shell magnetic (iron oxide: Fe3O4)@platinum-metal organic framework/epirubicin (abbreviated as M@Pt-MOF/EPI) nano-platform is considered an effective cancer therapeutic agent. Relatively small particle size, round shape, and specific response to pH, are the key features of these nanomaterials to be used as promising therapeutic agents. Chemotherapy and photodynamic therapy, when applied in addition to the anticancer effects of nanomaterials, further enhance the therapeutic efficacy. The extensive use, utilization, and efficacy of Core-Shell Magnetic@Platinium-Metal Organic Framework/epirubicin Nano-Platforms for chemo-photodynamic combination therapy in the treatment of several cancers, including triple-negative breast cancer, are examined in this in-depth investigation.


Assuntos
Epirubicina , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Fotoquimioterapia/métodos , Epirubicina/uso terapêutico , Epirubicina/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Feminino , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Terapia Combinada , Platina/uso terapêutico , Platina/farmacologia
9.
Biomater Adv ; 165: 213998, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39236581

RESUMO

This review discusses the relationship between inflammation and cancer initiation and progression, which has prompted research into anti-inflammatory approaches for cancer prevention and treatment. Specifically, it focuses on the use of inflammation-reducing agents to enhance the effectiveness of tumor treatment methods. These agents are combined with platinum(II)-based antitumor drugs to create multifunctional platinum(IV) prodrugs, allowing for simultaneous delivery to tumor cells in a specific ratio. Once inside the cells and subjected to intracellular reduction, both components can act in parallel through distinct pathways. Motivated by the objective of reducing the systemic toxicity associated with contemporary chemotherapy, and with the aim of leveraging the passive enhanced permeability and retention effect exhibited by nanostructured materials to improve their accumulation within tumor tissues, the platinum(IV) complexes have been efficiently loaded into mesoporous silica SBA-15 material. The resulting nanostructured materials are capable of providing controlled release of the conjugates when subjected to simulated plasma conditions. This feature suggests the potential for extended circulation within the body in vivo, with minimal premature release of the drug before reaching the intended target site. The primary emphasis of this review is on research that integrates these two approaches to develop chemotherapeutic treatments that are both more efficient and less harmful.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Portadores de Fármacos , Nanoestruturas , Dióxido de Silício , Humanos , Dióxido de Silício/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Animais , Porosidade , Platina/química , Platina/uso terapêutico , Platina/farmacologia , Neoplasias/tratamento farmacológico
10.
ACS Sens ; 9(9): 4956-4962, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39283684

RESUMO

Natural products play a significant role in new drug discovery and anticancer therapy, making the evaluation of their anticancer efficiency crucial for clinical application. However, delivering natural products to single cells and in situ monitoring of induced signaling molecule fluctuation to evaluate anticancer efficiency remain significant challenges. Hence, we proposed a universal and straightforward strategy to construct a bifunctional nanoelectrode that integrates drug loading and monitoring of signal molecule fluctuations at the single-cell level. Platinum (Pt) nanoparticles/reduced graphene oxide (rGO) composites were first electrochemically deposited on the carbon fiber nanoelectrode (CFNE@Pt/rGO) to serve as electrocatalytic materials for the monitoring of natural-product-induced reactive oxygen species (ROS) generation. The GO/natural product complex, formed by π-π stacking and hydrophobic interactions, was further electrochemically reduced on the surface of CFNE@Pt/rGO to enable the CFNE drug-loading function. Using this bifunctional functional nanoelectrode, a series of natural products (such as capsaicin, curcumin, and chrysin) were delivered into single cancer cells, and their anticancer efficiency was evaluated by measuring ROS generation. The results showed that intracellular ROS production induced by chrysin was 1.5-fold greater than that of curcumin and 2.1-fold greater than that of capsaicin. This work proposes an effective tool to evaluate the anticancer efficiency of various natural products. Additionally, this nanotool can be expanded to monitor the fluctuation of other biomolecules (such as RNS, GSH, NADH, etc.) by replacing Pt nanoparticles with other electrocatalytic materials, which is significant for comprehensively exploring the anticancer efficiency of new drugs and for the clinical treatment of various diseases.


Assuntos
Antineoplásicos , Produtos Biológicos , Grafite , Platina , Espécies Reativas de Oxigênio , Humanos , Grafite/química , Espécies Reativas de Oxigênio/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Platina/química , Platina/farmacologia , Eletrodos , Análise de Célula Única/métodos , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química
11.
PLoS One ; 19(9): e0310997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39316585

RESUMO

The increasing prevalence of multi-drug resistance in pathogenic bacteria has rendered antibiotics ineffective, necessitating the exploration of alternative antibacterial approaches. Consequently, research efforts have shifted towards developing new antibiotics and improving the efficacy of existing ones. In the present study, novel core shell graphene oxide@platinum nanoparticles (GRO@Pt-NPs) and their unchanging form have been synthesized using the two-step pulsed laser ablation in liquid (PLAL) technique. The first step involved using the graphene target to create graphene nanoparticles (GRO-NPs), followed by the ablation of GRO-NPs inside platinum nanoparticles (Pt-NPs). To characterize the nanoparticles, various methods were employed, including UV-VIS, transmission electron microscopy (TEM), energy dispersive X-ray (EDX), mapping tests, and X-ray diffraction (XRD). The anti-bacterial and anti-biofilm properties of the nanoparticles were investigated. TEM data confirm the creation of GRO@Pt-NPs. The average particle size was 11 nm for GRO-NPs, 14 nm for Pt-NPs, and 26 nm for GRO@Pt-NPs. The results demonstrate that the created GRO@Pt-NPs have strong antibacterial properties. This pattern is mostly produced through the accumulation of GRO@Pt-NPs on the bacterial surface of Klebsiella pneumoniae (K. pneumoniae) and Enterococcus faecium (E. faecium). The inhibition zones against K. pneumoniae and E. faecium when GRO-NPs were used alone were found to be 11.80 mm and 11.50 mm, respectively. For Pt-NPs, the inhibition zones of E. faecium and K. pneumoniae were 20.50 mm and 16.50 mm, respectively. The utilization of GRO@Pt-NPs resulted in a significant increase in these values, with inhibitory rates of 25.50 mm for E. faecium and 20.45 mm for K. pneumoniae. The antibacterial results were more potent in the core-shell structure than the GRO-NPs alone or Pt-NPs alone. The current work uses, for the first time, a fast and effective technique to synthesize the GRO@Pt-NPs by PLAL method, and the preparation has high clinical potential for prospective use as an antibacterial agent.


Assuntos
Antibacterianos , Biofilmes , Grafite , Nanopartículas Metálicas , Platina , Grafite/química , Biofilmes/efeitos dos fármacos , Platina/química , Platina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/efeitos dos fármacos , Tamanho da Partícula
12.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39337597

RESUMO

A promising and sought-after class of nanozymes for various applications is Pt-containing nanozymes, primarily Au@Pt, due to their easy preparation and remarkable catalytic properties. This study aimed to explore the freeze-thaw method for functionalizing Pt-containing nanozymes with oligonucleotides featuring a polyadenine anchor. Spherical gold nanoparticles ([Au]NPs) were synthesized and subsequently used as seeds to produce urchin-like Au@Pt nanoparticles ([Au@Pt]NPs) with an average diameter of 29.8 nm. The nanoparticles were conjugated with a series of non-thiolated DNA oligonucleotides, each consisting of three parts: a 5'-polyadenine anchor (An, with n = 3, 5, 7, 10; triple-branched A3, or triple-branched A5), a random sequence of 23 nucleotides, and a linear polyT block consisting of seven deoxythymine residues. The resulting conjugates were characterized using transmission electron microscopy, spectroscopy, dynamic light scattering, and emission detection of the fluorescent label at the 3'-end of each oligonucleotide. The stability of the conjugates was found to depend on the type of oligonucleotide, with decreased stability in the row of [Au@Pt]NP conjugates with A7 > A5 > 3A3 > 3A5 > A10 > A3 anchors. These [Au@Pt]NP-oligonucleotide conjugates were further evaluated using lateral flow test strips to assess fluorescein-specific binding and peroxidase-like catalytic activity. Conjugates with A3, A5, A7, and 3A3 anchors showed the highest levels of signals of bound labels on test strips, exceeding conjugates in sensitivity by up to nine times. These findings hold significant potential for broad application in bioanalytical systems.


Assuntos
Ouro , Nanopartículas Metálicas , Oligonucleotídeos , Platina , Poli A , Ouro/química , Oligonucleotídeos/química , Nanopartículas Metálicas/química , Platina/química , Poli A/química , Adsorção , Catálise , Congelamento
13.
Nat Commun ; 15(1): 8346, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333142

RESUMO

Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM-1 min-1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.


Assuntos
Biocatálise , Catalase , Ouro , Platina , Platina/química , Ouro/química , Humanos , Catalase/química , Catalase/metabolismo , Paládio/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Catálise , Teoria da Densidade Funcional , Nanopartículas Metálicas/química
14.
ACS Sens ; 9(9): 4591-4598, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39240233

RESUMO

This paper proposes a novel multicomponent gas-sensing optical fiber probe system. It utilizes a precisely engineered Platinum-coated capillary fabricated via Atomic Layer Deposition (ALD) technology as the core for enhanced Raman spectroscopy, marking the first application of ALD in creating such a structure for gas Raman sensing. The noble metal capillary gas Raman probe demonstrates a low detection limit of 55 ppm for CO2 with a 30 s exposure time and good repeatability in multicomponent gas sensing. The capillary exhibits excellent stability, environmental resistance, and a large core diameter, enabling a rapid gas exchange rate and making it suitable for practical applications.


Assuntos
Fibras Ópticas , Platina , Análise Espectral Raman , Análise Espectral Raman/métodos , Análise Espectral Raman/instrumentação , Platina/química , Gases/análise , Gases/química , Dióxido de Carbono/análise , Limite de Detecção
15.
Chem Commun (Camb) ; 60(78): 10966-10969, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39263697

RESUMO

Bioactive NAD+ mediated multiple biocatalytic pathways in metabolic networks. Refining the structure of NADH oxidase-like (NOX) mimics to efficiently replenish NAD+ has been promising but challenging in NAD+-dependent dehydrogenase electrochemical cascade biosensing. Herein, we discovered that PtOx structures, formed via lattice oxygen translocation from WO3 to Pt NPs at the interface, potentially activate and modulate the NOX-like functionality in Pt@WO3 nanosheets. Incorporating PtOx leads to a more positive valence of Pt species within Pt/PtOx@WO3-x, where the PtO2 species serve as preeminent reaction sites for NADH coordination, activation, and dehydrogenation. Consequently, such nanozymes display enhanced NOX-like activity towards NADH oxidation in comparison to Pt@WO3. Ultimately, the 650-Pt/PtOx@WO3-x nanozyme is employed in an electrochemical cascade biosensor for ß-hydroxybutyrate (HB) detection, achieving a calculated detection limit of 25 µM. This study offers insights into PtOx activation in Pt-based NOX mimics and supports the future development of NAD+/NADH-dependent electrochemical biosensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , NAD , Óxidos , Platina , Tungstênio , NAD/química , Tungstênio/química , Platina/química , Óxidos/química , Hidroxibutiratos/química , Oxirredução , Nanopartículas Metálicas/química , Limite de Detecção
16.
ACS Nano ; 18(37): 25865-25879, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39219487

RESUMO

Greatly improving the sensitivity and detection range of lateral flow immunoassays (LFAs) by at least 100 times without using additional instruments remains challenging. Herein, we develop a three-dimensional (3D) film-like nanozyme (GO-Pt30-AuPt5) by ordered assembly of one layer of 30 nm Pt nanoparticles (NPs) and one layer of small Au@Pt satellites (5 nm) onto a two-dimensional (2D) graphene oxide (GO) nanofilm, in which GO greatly increased the interface area and stability of the nanozyme whereas Pt and Au@Pt NPs synergistically enhanced colorimetric/catalytic activities. The grafting of outer Au@Pt satellites converted the 2D nanofilm into a 3D flexible nanozyme with numerous catalytic sites for enzymatic deposition signal amplification and binding sites for target capture. The introduction of GO-Pt30-AuPt5 into multiplex LFA achieved the ultrasensitive and simultaneous detection of two important respiratory viruses with sensitivity of 1 pg/mL level, which was about 100 times higher than that without signal enrichment and at least 20 and 1900 times higher than those of traditional enzyme-linked immunosorbent assay and AuNP-based LFA, respectively. The clinical utility of the proposed assay was validated through the diagnosis of 49 real clinical respiratory tract specimens. Our proposed LFA shows great potential for the ultrasensitive screening of pathogens in the field.


Assuntos
Ouro , Grafite , Nanopartículas Metálicas , Platina , Ouro/química , Nanopartículas Metálicas/química , Imunoensaio/métodos , Grafite/química , Platina/química , Humanos , Colorimetria/métodos , Tamanho da Partícula
17.
Inorg Chem ; 63(37): 17249-17262, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39235210

RESUMO

Using the principle of "Magic Bullet", a cisplatin-derived platinum(IV) prodrug heterobimetallic Pt(IV)-Ru(II) complex, cis,cis,trans-[Pt(NH3)2Cl2{Ru(tpy-BODIPY)(tpy-COO)}(biotin)]Cl2 (Pt-Ru-B, 2), having two axial ligands, namely, biotin as water-soluble B-vitamin for enhanced cellular uptake and a BODIPY-ruthenium(II) (Ru-B, 1) photosensitizer having N,N,N-donor tpy (4'-phenyl-2,2':6',2″-terpyridine) bonded to boron-dipyrromethene (BODIPY), is developed as a "Platin Bullet" for targeted photodynamic therapy (PDT). Pt-Ru-B exhibited intense absorption near 500 nm and emission near 513 nm (λex = 488 nm) in a 10% dimethyl sulfoxide-Dulbecco's phosphate-buffered saline medium (pH 7.2). The BODIPY complex on light activation generates singlet oxygen as the reactive oxygen species (ROS) giving a quantum yield (ΦΔ) of ∼0.64 from 1,3-diphenylisobenzofuran experiments. Pt-Ru-B exhibited preferential cellular uptake in cancer cells over noncancerous cells. The dichlorodihydrofluorescein diacetate assay confirmed the generation of cellular ROS. Confocal images revealed its mitochondrial internalization. Pt-Ru-B showed submicromolar photocytotoxicity in visible light (400-700 nm) in A549 and multidrug-resistant MDA-MB-231 cancer cells. It remained nontoxic in the dark and less toxic in nontumorigenic cells. Cellular apoptosis and alteration of the mitochondrial membrane potential were evidenced from the respective Annexin V-FITC/propidium iodide assay and JC-1 dye assay. A wound healing assay using A549 cells and Pt-Ru-B revealed inhibition of cancer cell migration, highlighting its potential as an antimetastatic agent.


Assuntos
Antineoplásicos , Biotina , Fotoquimioterapia , Fármacos Fotossensibilizantes , Pró-Fármacos , Rutênio , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química , Rutênio/química , Rutênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Biotina/química , Biotina/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química , Porfobilinogênio/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Platina/química , Platina/farmacologia , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/química
18.
J Med Chem ; 67(18): 16416-16434, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39235464

RESUMO

The inflammatory microenvironment is a central driver of tumor metastasis, intimately associated with the promotion of epithelial-mesenchymal transition (EMT) and immune suppression. Here, transferrin-modified carprofen platinum(IV) nanoparticles Tf-NPs@CPF2-Pt(IV) with promising antiproliferative and antimetastatic properties were developed, which activated by inhibiting inflammation, suppressing EMT, and activating immune responses besides causing DNA injury. The nanoparticles released the active ingredient CPF2-Pt(IV) in a sustained manner and offered enhanced pharmacokinetic properties compared to free CPF2-Pt(IV) in vivo. Additionally, they possessed satisfactory tumor targeting effects via the transferrin motif. Serious DNA damage was induced with the upregulation of γ-H2AX and P53, and the mitochondria-mediated apoptotic pathway Bcl-2/Bax/caspase3 was initiated. Inflammation was alleviated by inhibiting COX-2 and MMP9 and decreasing inflammatory cytokines TNF-α and IL-6. Subsequently, the EMT was reversed by inhibiting the Wnt/ß-catenin pathway. Furthermore, the antitumor immunity was provoked by blocking the immune checkpoint PD-L1 and increasing CD3+ and CD8+ T lymphocytes in tumors.


Assuntos
Antineoplásicos , Carbazóis , Transição Epitelial-Mesenquimal , Inflamação , Transferrina , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos , Transferrina/química , Transferrina/metabolismo , Inflamação/tratamento farmacológico , Carbazóis/farmacologia , Carbazóis/química , Linhagem Celular Tumoral , Platina/química , Platina/farmacologia , Nanopartículas/química , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Nanopartículas Metálicas/química , Metástase Neoplásica , Masculino , Feminino
19.
ACS Appl Mater Interfaces ; 16(37): 48937-48954, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39241197

RESUMO

Two phthalocyanine derivatives tetra-peripherally substituted with tert-butylsulfonyl groups and coordinating either zinc(II) or platinum(II) ions have been synthesized and subsequently investigated in terms of their optical and photochemical properties, as well as biological activity in cellular, tissue-engineered, and animal models. Our research has revealed that both synthesized phthalocyanines are effective generators of reactive oxygen species (ROS). PtSO2tBu demonstrated an outstanding ability to generate singlet oxygen (ΦΔ = 0.87-0.99), while ZnSO2tBu in addition to 1O2 (ΦΔ = 0.45-0.48) generated efficiently other ROS, in particular ·OH. Considering future biomedical applications, the affinity of the tested phthalocyanines for biological membranes (partition coefficient; log Pow) and their primary interaction with serum albumin were also determined. To facilitate their biological administration, a water-dispersible formulation of these phthalocyanines was developed using Pluronic triblock copolymers to prevent self-aggregation and improve their delivery to cancer cells and tissues. The results showed a significant increase in cellular uptake and phototoxicity when phthalocyanines were incorporated into the customizable polymeric micelles. Moreover, the improved distribution in the body and photodynamic efficacy of the encapsulated phthalocyanines were investigated in hiPSC-delivered organoids and BALB/c mice bearing CT26 tumors. Both photosensitizers exhibit strong antitumor activity. Notably, vascular-targeted photodynamic therapy (V-PDT) led to complete tumor eradication in 84% of ZnSO2tBu and 100% of PtSO2tBu-treated mice, and no recurrence has so far been observed for up to five months after treatment. In the case of PtSO2tBu, the effect was significantly stronger, offering a wider range of light doses suitable for achieving effective PDT.


Assuntos
Indóis , Isoindóis , Fotoquimioterapia , Fármacos Fotossensibilizantes , Zinco , Animais , Indóis/química , Indóis/farmacologia , Humanos , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Zinco/química , Zinco/farmacologia , Platina/química , Platina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química
20.
Anal Chim Acta ; 1324: 343096, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218577

RESUMO

BACKGROUND: Measurement of endogenous cellular hydrogen peroxide (H2O2) can provide information on cellular status, and help to understand cellular metabolism and signaling processes, thus contributing to elucidation of disease mechanisms and new diagnostics/therapeutic approaches. RESULTS: In this work, Pt-Cd bimetallic nanozyme was successfully prepared via the solvothermal synthetic method for sensitive detection of H2O2. The synthesized Pt-Cd bimetallic nanozyme could exhibited good electrochemical activity. Then, the materials were analyzed for the electrochemical properties and catalytic properties of H2O2 by cyclic voltammetry and chronoamperometry, respectively. Results indicated that the synthesized nanozyme had superior sensitivity (295 µA⸳mM-1⸳cm-2) and selectivity toward H2O2 with a detection limit of 0.21 µM. Further, the Pt-Cd bimetallic nanozyme displayed good electrochemical properties compared to platinum catalysts alone. The application was extended to determine the produced H2O2 from human hepatocellular carcinoma cells (HepG2) and normal hepatocyte (LO2) samples after ascorbic acid stimulation, thus enabling the early warning of cellular carcinogenesis. SIGNIFICANCE: This strategy promises simple, rapid, inexpensive and effective electrochemical sensing and provides a new pathway for the synthesis of bimetallic nanozymes to construct an electrochemical sensor for the sensitive detection of H2O2.


Assuntos
Cádmio , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Platina , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Platina/química , Humanos , Técnicas Eletroquímicas/métodos , Cádmio/química , Cádmio/análise , Células Hep G2 , Nanopartículas Metálicas/química , Limite de Detecção , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA