Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Helminthol ; 96: e23, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35321773

RESUMO

Tetraspanins are a superfamily of transmembrane proteins that in flatworms have structural roles in the development, maturation or stability of the tegument. Several tetraspanins are considered as potential candidates for vaccines or drugs against helminths. Monopisthocotylean monogeneans are ectoparasites of fish that are health hazards for farmed fish. The aim of this study was to identify in silico putative tetraspanins in the genomic datasets of four monopisthocotylean species. The analysis predicted and classified 40 tetraspanins in Rhabdosynochus viridisi, 39 in Scutogyrus longicornis, 22 in Gyrodactylus salaris and 13 in Neobenedenia melleni, belonging to 13 orthologous groups. The high divergence of tetraspanins made it difficult to annotate their function. However, a conserved group was identified in different metazoan taxa. According to this study, metazoan tetraspanins can be divided into 17 monophyletic groups. Of the 114 monogenean tetraspanins, only seven were phylogenetically close to tetraspanins from non-platyhelminth metazoans, which suggests that this group of proteins shows rapid sequence divergence. The similarity of the monopisthocotylean tetraspanins was highest with trematodes, followed by cestodes and then free-living platyhelminths. In total, 27 monopisthocotylean-specific and 34 flatworm-specific tetraspanins were identified. Four monogenean tetraspanins were orthologous to TSP-1, which is a candidate for the development of vaccines and a potential pharmacological target in trematodes and cestodes. Although studies of tetraspanins in parasitic flatworms are scarce, this is an interesting group of proteins for the development of new methods to control monogeneans.


Assuntos
Doenças dos Peixes , Platelmintos , Tetraspaninas , Animais , Doenças dos Peixes/parasitologia , Peixes , Filogenia , Platelmintos/genética , Platelmintos/metabolismo , Tetraspaninas/química , Tetraspaninas/classificação , Tetraspaninas/genética
2.
Parasit Vectors ; 13(1): 491, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977830

RESUMO

BACKGROUND: The TNF signaling pathway is involved in the regulation of many cellular processes (such as apoptosis and cell proliferation). Previous reports indicated the effect of human TNF-α on metabolism, physiology, gene expression and protein phosphorylation of the human parasite Schistosoma mansoni and suggested that its TNF receptor was responsible for this response. The lack of an endogenous TNF ligand reinforced the idea of the use of an exogenous ligand, but also opens the possibility that the receptor actually binds a non-canonical ligand, as observed for NGFRs. METHODS: To obtain a more comprehensive view, we analyzed platyhelminth genomes deposited in the Wormbase ParaSite database to investigate the presence of TNF receptors and their respective ligands. Using different bioinformatics approaches, such as HMMer and BLAST search tools we identified and characterized the sequence of TNF receptors and ligand homologs. We also used bioinformatics resources for the identification of conserved protein domains and Bayesian inference for phylogenetic analysis. RESULTS: Our analyses indicate the presence of 31 TNF receptors in 30 platyhelminth species. All platyhelminths display a single TNF receptor, and all are structurally remarkably similar to NGFR. It suggests no events of duplication and diversification occurred in this phylum, with the exception of a single species-specific duplication. Interestingly, we also identified TNF ligand homologs in five species of free-living platyhelminths. CONCLUSIONS: These results suggest that the TNF receptor from platyhelminths may be able to bind canonical TNF ligands, thus strengthening the idea that these receptors are able to bind human TNF-α. This also raises the hypothesis that an endogenous ligand was substituted by the host ligand in parasitic platyhelminths. Moreover, our analysis indicates that death domains (DD) may be present in the intracellular region of most platyhelminth TNF receptors, thus pointing to a previously unreported apoptotic action of such receptors in platyhelminths. Our data highlight the idea that host-parasite crosstalk using the TNF pathway may be widespread in parasitic platyhelminths to mediate apoptotic responses. This opens up a new hypothesis to uncover what might be an important component to understand platyhelminth infections.


Assuntos
Proteínas de Helminto/metabolismo , Platelmintos/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Infecções por Trematódeos/parasitologia , Sequência de Aminoácidos , Animais , Evolução Molecular , Genoma Helmíntico , Proteínas de Helminto/química , Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Filogenia , Platelmintos/química , Platelmintos/classificação , Platelmintos/genética , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Alinhamento de Sequência , Transdução de Sinais , Infecções por Trematódeos/metabolismo , Fatores de Necrose Tumoral/metabolismo
3.
BMC Evol Biol ; 17(1): 215, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893179

RESUMO

BACKGROUND: Small non-coding RNAs, including miRNAs, and gene silencing mediated by RNA interference have been described in free-living and parasitic lineages of flatworms, but only few key factors of the small RNA pathways have been exhaustively investigated in a limited number of species. The availability of flatworm draft genomes and predicted proteomes allowed us to perform an extended survey of the genes involved in small non-coding RNA pathways in this phylum. RESULTS: Overall, findings show that the small non-coding RNA pathways are conserved in all the analyzed flatworm linages; however notable peculiarities were identified. While Piwi genes are amplified in free-living worms they are completely absent in all parasitic species. Remarkably all flatworms share a specific Argonaute family (FL-Ago) that has been independently amplified in different lineages. Other key factors such as Dicer are also duplicated, with Dicer-2 showing structural differences between trematodes, cestodes and free-living flatworms. Similarly, a very divergent GW182 Argonaute interacting protein was identified in all flatworm linages. Contrasting to this, genes involved in the amplification of the RNAi interfering signal were detected only in the ancestral free living species Macrostomum lignano. We here described all the putative small RNA pathways present in both free living and parasitic flatworm lineages. CONCLUSION: These findings highlight innovations specifically evolved in platyhelminths presumably associated with novel mechanisms of gene expression regulation mediated by small RNA pathways that differ to what has been classically described in model organisms. Understanding these phylum-specific innovations and the differences between free living and parasitic species might provide clues to adaptations to parasitism, and would be relevant for gene-silencing technology development for parasitic flatworms that infect hundreds of million people worldwide.


Assuntos
Platelmintos/genética , Platelmintos/metabolismo , Interferência de RNA , Animais , Proteínas Argonautas/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Inativação Gênica , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , MicroRNAs/genética , Platelmintos/classificação , RNA Interferente Pequeno , Ribonuclease III/metabolismo
4.
J Biol Chem ; 283(26): 17898-907, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18408002

RESUMO

Platyhelminth parasites are a major health problem in developing countries. In contrast to their mammalian hosts, platyhelminth thiol-disulfide redox homeostasis relies on linked thioredoxin-glutathione systems, which are fully dependent on thioredoxin-glutathione reductase (TGR), a promising drug target. TGR is a homodimeric enzyme comprising a glutaredoxin domain and thioredoxin reductase (TR) domains with a C-terminal redox center containing selenocysteine (Sec). In this study, we demonstrate the existence of functional linked thioredoxin-glutathione systems in the cytosolic and mitochondrial compartments of Echinococcus granulosus, the platyhelminth responsible for hydatid disease. The glutathione reductase (GR) activity of TGR exhibited hysteretic behavior regulated by the [GSSG]/[GSH] ratio. This behavior was associated with glutathionylation by GSSG and abolished by deglutathionylation. The K(m) and k(cat) values for mitochondrial and cytosolic thioredoxins (9.5 microm and 131 s(-1), 34 microm and 197 s(-1), respectively) were higher than those reported for mammalian TRs. Analysis of TGR mutants revealed that the glutaredoxin domain is required for the GR activity but did not affect the TR activity. In contrast, both GR and TR activities were dependent on the Sec-containing redox center. The activity loss caused by the Sec-to-Cys mutation could be partially compensated by a Cys-to-Sec mutation of the neighboring residue, indicating that Sec can support catalysis at this alternative position. Consistent with the essential role of TGR in redox control, 2.5 microm auranofin, a known TGR inhibitor, killed larval worms in vitro. These studies establish the selenium- and glutathione-dependent regulation of cytosolic and mitochondrial redox homeostasis through a single TGR enzyme in platyhelminths.


Assuntos
Citosol/metabolismo , Glutationa/química , Mitocôndrias/metabolismo , Complexos Multienzimáticos/química , NADH NADPH Oxirredutases/química , Oxirredução , Selênio/química , Animais , Citosol/química , Echinococcus granulosus/metabolismo , Inibidores Enzimáticos/farmacologia , Homeostase , Cinética , Modelos Biológicos , Platelmintos/metabolismo , Estrutura Terciária de Proteína , Selenocisteína/química
5.
Trends Parasitol ; 20(7): 340-6, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15193566

RESUMO

The thioredoxin and glutathione systems play a central role in thiol-disulfide redox homeostasis in many organisms by providing electrons to essential enzymes, and defence against oxidative stress. These systems have recently been characterized in platyhelminth parasites, and the emerging biochemical scenario is the existence of linked processes with the enzyme thioredoxin glutathione reductase supplying reducing equivalents to both pathways. In contrast to their hosts, conventional thioredoxin reductase and glutathione reductase enzymes appear to be absent. Analysis of published data and expressed-sequence tag databases indicates the presence of linked thioredoxin-glutathione systems in the cytosolic and mitochondrial compartments of these parasites.


Assuntos
Glutationa/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Platelmintos/metabolismo , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Citosol/enzimologia , Citosol/metabolismo , Glutationa/genética , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Oxirredução , Platelmintos/enzimologia , Platelmintos/genética , Selenocisteína/metabolismo , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA