Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.057
Filtrar
1.
J Environ Sci (China) ; 147: 359-369, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003053

RESUMO

Agricultural practices significantly contribute to greenhouse gas (GHG) emissions, necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production. Plastic film mulching is commonly used in the Loess Plateau region. Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity. Combining these techniques represents a novel agricultural approach in semi-arid areas. However, the impact of this integration on soil carbon storage (SOCS), carbon footprint (CF), and economic benefits has received limited research attention. Therefore, we conducted an eight-year study (2015-2022) in the semi-arid northwestern region to quantify the effects of four treatments [urea supplied without plastic film mulching (CK-U), slow-release fertilizer supplied without plastic film mulching (CK-S), urea supplied with plastic film mulching (PM-U), and slow-release fertilizer supplied with plastic film mulching (PM-S)] on soil fertility, economic and environmental benefits. The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions (≥71.97%). Compared to other treatments, PM-S increased average grain yield by 12.01%-37.89%, water use efficiency by 9.19%-23.33%, nitrogen accumulation by 27.07%-66.19%, and net return by 6.21%-29.57%. Furthermore, PM-S decreased CF by 12.87%-44.31% and CF per net return by 14.25%-41.16%. After eight years, PM-S increased SOCS (0-40 cm) by 2.46%, while PM-U decreased it by 7.09%. These findings highlight the positive effects of PM-S on surface soil fertility, economic gains, and environmental benefits in spring maize production on the Loess Plateau, underscoring its potential for widespread adoption and application.


Assuntos
Agricultura , Pegada de Carbono , Fertilizantes , Plásticos , Zea mays , Zea mays/crescimento & desenvolvimento , Agricultura/métodos , China , Solo/química , Gases de Efeito Estufa/análise , Nitrogênio/análise
2.
J Environ Sci (China) ; 147: 512-522, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003067

RESUMO

To better understand the migration behavior of plastic fragments in the environment, development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary. However, most of the studies had focused only on colored plastic fragments, ignoring colorless plastic fragments and the effects of different environmental media (backgrounds), thus underestimating their abundance. To address this issue, the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis (PLS-DA), extreme gradient boost, support vector machine and random forest classifier. The effects of polymer color, type, thickness, and background on the plastic fragments classification were evaluated. PLS-DA presented the best and most stable outcome, with higher robustness and lower misclassification rate. All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm. A two-stage modeling method, which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background, was proposed. The method presented an accuracy higher than 99% in different backgrounds. In summary, this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.


Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Plásticos , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Monitoramento Ambiental/métodos , Plásticos/análise , Análise dos Mínimos Quadrados , Análise Discriminante , Cor
4.
Waste Manag ; 189: 300-313, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226844

RESUMO

The plastic industry needs to match the recycling goals set by the EU. Next to technological hurdles, the cost of plastics mechanical recycling is an important modality in this transition. This paper reveals how business economic cost calculation can expose significant pitfalls in the recycling process, by unravelling limitations and boundary conditions, such as scale. By combining the business economic methodology with a Material Flow Analysis, this paper shows the influence of mass retention of products, the capacity of the processing lines, scaling of input capacity, and waste composition on the recycling process and associated costs. Two cases were investigated: (i) the Initial Sorting in a medium size Material Recovery Facility and (ii) an improved mechanical recycling process for flexibles - known as the Quality Recycling Process - consisting of Additional Sorting and Improved Recycling. Assessing the whole recycling chain gives a more holistic insight into the influences of choices and operating parameters on subsequent costs in other parts of the chain and results in a more accurate cost of recycled plastic products. This research concluded that the cost of Initial Sorting of flexibles is 110,08-122,53 EUR/t, while the cost of subsequent Additional Sorting and Improved Recycling ranges from 566,26 EUR/t for rPE Flex to 735,47 EUR/t for rPP Film, these insights can be used to determine a fair price for plastic products. For the Quality Recycling Process it was shown that rationalisation according to the identified pitfalls can reduce the cost per tonne of product by 15-26%.


Assuntos
Plásticos , Reciclagem , Reciclagem/métodos , Reciclagem/economia , Custos e Análise de Custo , Gerenciamento de Resíduos/métodos , Gerenciamento de Resíduos/economia
6.
Chemosphere ; 364: 143235, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39218259

RESUMO

Microplastics negatively impact soil health and productivity. Organic fertilizers constitute significant contributors of microplastics in agricultural soils. Nevertheless, comprehensive data on the diversity of microplastics in long-term fertilized soils remain unavailable. In this study, we assessed the presence of microplastics in soils subjected to application of three different organic fertilizers (pig manure, chicken manure, and sludge composts) over 12 years, and evaluated the potential ecological risks posed by microplastic accumulation. The average microplastic abundance in soil was 368.88 ± 207.97 (range: 90-910) items/kg. Microplastic abundance differed among fertilization treatments, with substantial increases of 16.67%, 71.67%, and 61.43% upon low to high application of the three treatments, respectively. Overall, the microplastics predominantly comprised fibers (70.94%) and fragments (25.25%), of which a substantial proportion constituted light-colored microplastics (transparent and white). The size of microplastics was mainly concentrated in the 1-2 mm range (39.96%), with rayon, polypropylene, polyester, and polyethylene being identified as the major types. The risk assessment indices of the three treatments were 229.38, 257.64, and 175.89, respectively, and were all classified as level 4 (high risk). The microplastic diversity integrated index and principal component analysis revealed that microplastics were uniformly distributed throughout the 0-20 cm soil depth consequent to tillage activity. Together, these findings provide a comprehensive assessment of microplastic pollution in long-term fertilized soils and serve as a scientific basis for reducing microplastic contamination in agricultural soils.


Assuntos
Agricultura , Monitoramento Ambiental , Fertilizantes , Microplásticos , Poluentes do Solo , Solo , Fertilizantes/análise , Poluentes do Solo/análise , Microplásticos/análise , Solo/química , Agricultura/métodos , Animais , Esterco/análise , Suínos , Galinhas , Medição de Risco , Plásticos/análise , Esgotos/química
7.
Chemosphere ; 364: 143221, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233299

RESUMO

Environmental pollution due to plastic waste is a global challenge causing adverse impacts on the ecosystem and public health. Microplastic (MP) originates at the upstream processes such as industrial and household activities; however, their existence is affecting the downstream environment. Even though many governments and non-government organizations have taken technological and regulatory steps, these current efforts and strategies are insufficient to prevent the MP release in the environment. Thus, a multidisciplinary global approach is required, which must prioritize the reducing of plastic inputs to the environment. To regulate MP levels in the environment, worldwide reformative and preventive strategies are required because the issue is not limited to a single nation or region. In relation to marine plastic waste, a number of multilateral agreements and measures exist at global level. Several regulatory measures have been examined by regulatory bodies with the intention of safeguarding the environment from excessive MP contamination. However, neither of the frameworks in place is specifically made to stop the increased MP pollution in the environment. Therefore, this review focused on the preventive measures taken by the government and non-government organizations for MP control through legislations. The study also critically discussed MP-related policies aiming to increase the viability and efficiency of implementing future plastic management. This review is expected to provide the basic guidelines for formulating MP standards in the environment.


Assuntos
Ecossistema , Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Política Ambiental , Plásticos/análise , Poluição Ambiental/legislação & jurisprudência
8.
Chemosphere ; 364: 143266, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39241841

RESUMO

To address the challenges associated with medical plastic waste and to characterize its heterogeneity, non-recyclability, and potential biohazard risks, this study explored a carbon dioxide (CO2)-assisted pyrolysis process as a sustainable disposal method. Medical plastic waste typically includes polypropylene, polystyrene, and polyvinyl chloride. To experimentally evaluate the functional reactivity of CO2, we employed three pyrolysis setups (one-stage, two-stage, and catalytic processes). The technical advantages of using CO2 over inert gases such as nitrogen (N2) were demonstrated through pyrolysis tests. The results showed that energy production was enhanced under CO2 conditions, with catalytic pyrolysis generating 146% more flammable gases compared to pyrolysis in an N2 environment. The use of CO2 also led to a reduction in the formation of toxic chemicals due to improved thermal cracking. The CO2-assisted pyrolysis process exhibited net negative CO2 emissions when a catalyst was present, as a substantial amount of CO2 was consumed during the process. In conclusion, CO2-assisted pyrolysis of medical plastic waste offers a sustainable management solution that maximizes the utilization of carbon resources.


Assuntos
Dióxido de Carbono , Plásticos , Pirólise , Dióxido de Carbono/química , Dióxido de Carbono/análise , Plásticos/química , Resíduos de Serviços de Saúde , Reciclagem/métodos , Eliminação de Resíduos de Serviços de Saúde/métodos , Nitrogênio/química , Catálise , Gerenciamento de Resíduos/métodos
9.
Environ Sci Pollut Res Int ; 31(44): 55974-55983, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39249613

RESUMO

Microplastics (MPs), tiny plastic particles less than 5 mm in size, have emerged as a common and worrying pollutant in marine, freshwater, and terrestrial environments worldwide. In this study, we revealed the microplastic exposure of two endemic newt species for Türkiye. We found that polyethylene terephthalate (PET) was the predominant microplastic polymer type in both species, with the blue fiber shape in particular. We also found that there was a negative correlation between microplastic size and gastrointestinal tract (GIT) weight, but there was no significant difference between body length and GIT weight of both species. Our findings might be surprising as the studied species live in natural spring waters in remote, high-altitude areas. However, the detection of water bottles in their habitats appears to be the reason for their exposure to microplastic pollution. Therefore, reducing the use of single-use plastics is predicted to contribute to the conservation of these endemic newts.


Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Animais , Plásticos
10.
Chemosphere ; 364: 143279, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39251163

RESUMO

The extensive production and utilization of plastic products are inevitable in the current scenario. However, the non-degradable nature of waste plastic generated after use poses a grave concern. Comprehensive efforts are being made to find viable technological solutions to manage the escalating challenge of waste plastic. This review focuses on the progress made in transformation of waste plastic into value-added nanomaterials. An overview is provided of the waste plastic issue on a global level and its ecological impacts. Currently established methodologies for waste plastic management are examined, along with their limitations. Subsequently, state-of-the-art techniques for converting waste plastic into nanostructured materials are presented, with a critical evaluation of their distinct merits and demerits. Several demonstrated technologies and case studies are discussed regarding the utilization of these nanomaterials in diverse applications, including environmental remediation, energy production and storage, catalytic processes, sensors, drug delivery, bioimaging, regenerative medicine and advanced packaging materials. Moreover, challenges and prospects in the commercial level production of waste plastic-derived nanomaterials and their adoption for industrial and practical usage are highlighted. Overall, this work underscores the potential of transforming waste plastic into nanostructured materials for multifaceted applications. The valorization approach presented here offers an integration of waste plastic management and sustainable nanotechnology. The development of such technologies should pave the way toward a circular economy and the attainment of sustainable development goals.


Assuntos
Nanoestruturas , Plásticos , Gerenciamento de Resíduos , Nanoestruturas/química , Gerenciamento de Resíduos/métodos , Catálise , Recuperação e Remediação Ambiental/métodos , Desenvolvimento Sustentável
11.
Isr J Health Policy Res ; 13(1): 44, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256853

RESUMO

BACKGROUND: Israel is a regional "hotspot" of plastic pollution, with little discussion of potential adverse health effects from exposure to plastic. This review aims to stimulate discussion and drive policy by focusing on these adverse health effects. MAIN BODY: Plastics are synthetic polymers containing additives which can leach from food- and beverage-contact plastic into our food and beverages, and from plastic textiles onto our skin. Plastics persist in the environment for generations, fragmenting into MNPs: Micro (1 micron-5 mm)-Nano (1 nm-1 micron)-Plastic, which contaminate our atmosphere, water, and food chain. MNP can enter the human body through ingestion, inhalation and touch. MNP < 10 microns can cross epithelial barriers in the respiratory and gastrointestinal systems, and fragments < 100 nm can cross intact skin, enabling entry into body tissues. MNP have been found in multiple organs of the human body. Patients with MNP in atheromas of carotid arteries have increased risk of a combined measure of stroke, cardiovascular disease, and death. Toxic additives to plastics include bisphenols, phthalates, and PFAS, endocrine-disrupting chemicals (EDCs) which cause dysregulation of thyroid function, reproduction, and metabolism, including increased risk of obesity, diabetes, endometriosis, cancer, and decreased fertility, sperm count and quality. Fetal exposure to EDCs is associated with increased rates of miscarriages, prematurity and low birth weight. There is likely no safe level of exposure to EDCs, with increasing evidence of trans-generational and epigenetic effects. There are several existing Israeli laws to reduce plastic use and waste. Taxes on single-use plastic (SUP) were recently cancelled. There are many gaps in regulatory standards for food-, beverage- and child- safe plastic. Existing standards are poorly enforced. CONCLUSION: Reduction in production and use of plastic, promotion of recycling and reduction of leaching of toxic additives into our food and beverages are essential policy goals. Specific recommendations: Periodic monitoring of MNP in bottled beverages, food, indoor air; Strengthen enforcement of standards for food-, beverage-, and child-safe plastic; Renew tax on SUPs; National ban on SUP at public beaches, nature reserves and parks; Ban products manufactured with MNP; Increase research on sources and health outcomes of exposure to MNP and EDCs.


Assuntos
Exposição Ambiental , Microplásticos , Plásticos , Humanos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/legislação & jurisprudência , Exposição Ambiental/prevenção & controle , Política de Saúde/legislação & jurisprudência , Israel , Microplásticos/efeitos adversos , Microplásticos/análise , Microplásticos/química , Plásticos/efeitos adversos , Plásticos/análise , Plásticos/química
12.
Sci Total Environ ; 953: 176163, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39260485

RESUMO

Widespread use of plastics in consumer products, packaging, cosmetics, and industrial and agricultural production has resulted in the ubiquitous occurrence of microplastics in terrestrial environment. Compared to the marine environment, only limited studies have investigated the microplastics pollution and associated risk in terrestrial environment. The present review summarizes the global distribution of microplastics in terrestrial environment, their transport pathways and fate, risk to ecosystem and human health, and abatement strategies. Small particle sizes (<500 µm); fragment, fiber, and film shapes; transparent and white color; polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) polymers were the major characteristics of the microplastics found in terrestrial environment. Microplastics in soils negatively affect soil organisms, while the impact of microplastics in terrestrial environment on human health is poorly understood, which needs to be explored further as there is clear evidence on their presence in human bodies. The removal of microplastics from soil environment is quite complex and costly, thus prevention of their releases is preferable. Among the existing abatement options, biodegradation, which harnesses bacterial strains to degrade microplastics through enzymatic hydrolysis, hold promise for terrestrial environment. Strengthening global cooperation, implementing timely policies on plastic use and recycle, and developing new technologies for control of microplastics are recommended to reduce the pollution in terrestrial environment. Global effort on reducing plastic wastes and enhancing their management is imperative, while substitution with biodegradable plastics could help minimize future accumulation of microplastics in terrestrial environment.


Assuntos
Monitoramento Ambiental , Microplásticos , Microplásticos/análise , Biodegradação Ambiental , Plásticos/análise , Poluentes do Solo/análise , Humanos , Ecossistema
13.
Sci Total Environ ; 953: 176130, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39260508

RESUMO

Plastics aging reduces resistance to microbial degradation. Plastivore Tenebrio molitor rapidly biodegrades polystyrene (PS, size: < 80 µm), but the effects of aging on PS biodegradation by T. molitor remain uncharacterized. This study examined PS biodegradation over 24 days following three pre-treatments: freezing with UV exposure (PS1), UV exposure (PS2), and freezing (PS3), compared to pristine PS (PSv) microplastic. The pretreatments deteriorated PS polymers, resulting in slightly higher specific PS consumption (602.8, 586.1, 566.7, and 563.9 mg PS·100 larvae-1·d-1, respectively) and mass reduction rates (49.6 %, 49.5 %, 49.2 %, and 48.7 %, respectively) in PS1, PS2, and PS3 compared to PSv. Improved biodegradation correlated with reduced molecular weights and the formation of oxidized functional groups. Larvae fed more aged PS exhibited greater gut microbial diversity, with microbial community and metabolic pathways shaped by PS aging, as supported by co-occurrence network analysis. These findings indicated that the aging treatments enhanced PS biodegradation by only limited extent but impacted greater on gut microbiome and bacterial metabolic genes, indicating that the T. molitor host have highly predominant capability to digest PS plastics and alters gut microbiome to adapt the PS polymers fed to them.


Assuntos
Biodegradação Ambiental , Microbioma Gastrointestinal , Larva , Poliestirenos , Tenebrio , Animais , Tenebrio/metabolismo , Microbioma Gastrointestinal/fisiologia , Larva/metabolismo , Bactérias/metabolismo , Plásticos/metabolismo , Poluentes Químicos da Água/metabolismo
14.
Environ Monit Assess ; 196(10): 947, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289217

RESUMO

Microplastics (MPs) are emerging and ubiquitous contaminants, known to accumulate in river sediments. In many developing nations, the absence of policies for managing plastic waste puts the inland river ecosystems at risk of excessive abundance of plastics and MPs. However, only limited studies have reported MPs in river environments in these countries. The current study therefore examined the abundance and nature of MPs and potentially toxic elements (PTEs) in the sediments of the Odo-Ona and Ogun Rivers in Southwest Nigeria. MPs were extracted from the sediments using the density separation method and categorized according to their size, colour and shapes. The range of MP abundances found in the Ogun River sediments was 66.6 ± 12.2 to 311 ± 20.8 particles/kg, while that of the Odo-Ona River ranged from 133 ± 50 to 433 ± 100 particles/kg. The MPs polymer analyses revealed the presence of polyethylene (PE), polypropylene (PP) and polyamide (PA) particles in the sediments. PE was most abundant in the two rivers, constituting 72.8% and 59.7% of MPs (with 0.5 - 5 mm size), recovered from the Odo-Ona and Ogun Rivers, respectively. High concentrations of Cr and Pb with ranges of 10.3 - 48.3 and 10.1 - 211 mg/kg, respectively, were detected in the sediments and were associated with anthropogenic effects. This study reveals the impact of indiscriminate waste dumping on the water bodies, and calls for strict enforcement of environmental laws in the country.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Rios , Poluentes Químicos da Água , Nigéria , Rios/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Plásticos/análise
15.
J Chromatogr A ; 1735: 465323, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39244911

RESUMO

Plastic additives are introduced in plastic material formulations, along with organic polymers, to offer different properties such as stability, plasticity or color. However, plastic additives may migrate from the plastic material to the content (in case of plastic containers) or to the material in contact with the plastic, like human skin. In the case of plastic medical devices, this migration is of particular interest, as plastic additives may be deleterious to health. In the present paper, we examined the interest of combining supercritical fluid extraction (SFE) to supercritical fluid chromatography (SFC) hyphenated to mass spectrometry (MS) in an online system to characterize plastic additives in laboratory gloves, taken as samples of medical devices. A set of target compounds comprising 18 plasticizers, 4 antioxidants and 2 lubricants was defined and their detectability with MS was examined, where it appeared that electrospray ionization (ESI) provided better detectability than atmospheric pressure chemical ionization (APCI). After examining possible stationary phases with the help of Derringer desirability function, an isocratic chromatographic method (CO2:methanol 95:5) was developed on Shim-pack UC Phenyl column. The extraction method was examined with a 3-level full factorial design of experiments to optimize the extraction temperature (40 °C) and pressure (200 bar). The online SFE-SFC-MS method was compared to offline methods where the samples were extracted with liquid solvents at atmospheric pressure or high pressure then analysed with SFC-MS. In all cases, offline methods showed significant contaminants (like the oleamide lubricant) issuing from laboratory plastic materials as nitrogen drying station, syringes and filters, while the online method allowed a complete elimination of laboratory contaminations. Furthermore, the online method saved time, solvents and laboratory consumables. It will also show that transferring a compressible fluid from a loading loop is favourable to high efficiency, as the resulting chromatographic peaks are much thinner than when transferring a liquid. Compared to injecting liquid heptane, the efficiency increase was 3.4-fold, while compared to injecting liquid methanol (a common practice in SFC), the efficiency increase was 13-fold. Finally, the additive composition of different laboratory gloves was compared.


Assuntos
Cromatografia com Fluido Supercrítico , Plásticos , Cromatografia com Fluido Supercrítico/métodos , Plásticos/química , Espectrometria de Massas/métodos , Plastificantes/análise , Luvas Protetoras , Antioxidantes/análise , Antioxidantes/química , Espectrometria de Massas por Ionização por Electrospray/métodos
16.
Sci Total Environ ; 952: 175939, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218100

RESUMO

The use of plastic bowls (PB) has garnered increasing scrutiny due to the inevitable generation of microplastics (MPs) throughout their lifecycle. Despite this concern, there exists a limited understanding of the behaviors, toxicological effects, and mechanisms associated with aged PB (A-PB). This research investigated the photoaging properties of A-PB following ultraviolet irradiation and evaluated the neurotoxic impact of exposure to A-PB at environmentally relevant concentrations (0.001-1 mg/L) on Caenorhabditis elegans. Significant alterations in the crystallinity, elemental composition, and functional groups of A-PB were observed compared to virgin PB (V-PB), along with the emergence of environmentally persistent free radicals and reactive oxygen species. Toxicity assessments revealed that exposure to 0.1-1 mg/L A-PB induced greater neurotoxicity on locomotion behaviors compared to V-PB, as evidenced by marked reductions in head thrashes, body bends, wavelength, and mean amplitude. Exposure to A-PB also altered the fluorescence intensities and neurodegeneration percentage of dopaminergic, serotonergic, and GABAergic neurons, suggesting neuronal damage in the nematodes. Correspondingly, decreases in the levels of dopamine, serotonin, and GABA were noted together with significant drops in the expression of neurotransmitter-related genes (e.g., dat-1, tph-1, and unc-47). Correlation analyses established a significant positive relationship between these genes and locomotion behaviors. Further exploration showed the absence of locomotion behaviors in dat-1 (ok157), tph-1 (mg280), and unc-47 (e307) mutants, underscoring the pivotal roles of the dat-1, tph-1, and unc-47 genes in mediating neurotoxicity in C. elegans. This study sheds light on the photoaging characteristics and heightened toxicity of A-PB, elucidating the mechanisms driving A-PB-induced neurotoxicity.


Assuntos
Caenorhabditis elegans , Microplásticos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Microplásticos/toxicidade , Plásticos/toxicidade , Transmissão Sináptica/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Síndromes Neurotóxicas
17.
Sci Total Environ ; 952: 175881, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218119

RESUMO

Microplastics (MPs) are solid plastic particles less than or equal to 5 mm in size that are insoluble in water, and when the diameter is further reduced to <1 micrometer (µm), we call them nanoplastics (NPs). MPs and NPs are widely present in the atmosphere, and plastic particles have also been detected in the sputum of patients with respiratory diseases. This warns us that these tiny plastic particles are a potential threat to human respiratory health. The lungs, as the main organs of the respiratory system, are more likely to be adversely affected by inhaled NPs. However, the mechanism of transport and transformation of NPs in the lung is not clear, so our review mainly focuses on a series of effects and mechanisms of NPs on lung cells through absorption, distribution, metabolism, excretion (ADME) after inhalation into the human body. The most commonly used models in these experimental studies we focus on are A549 and BEAS-2B cells, which are used to model the lung cell response to plastic particles. In addition, we also summarize some shortcomings of these experiments and prospects for future studies, hoping to provide further clues for future studies and contribute to the prevention of related hazards and diseases.


Assuntos
Pulmão , Microplásticos , Humanos , Pulmão/metabolismo , Nanopartículas , Poluentes Atmosféricos , Plásticos , Exposição por Inalação , Transporte Biológico
18.
Sci Total Environ ; 952: 175938, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218118

RESUMO

Seabirds have become biovectors of plastic pollutants between marine and terrestrial ecosystems, and transport of plastics to their nesting sites becomes relevant due to increasing levels of pollution. To determine the pathways by which plastic reaches their colonies, we analysed the abundance of plastics at the nesting sites of five seabird species (Humboldt penguin Spheniscus humboldti, Peruvian booby Sula variegata, kelp gull Larus dominicanus, grey gull Leucophaeus modestus, Markham's storm-petrel Hydrobates markhami) nesting in northern Chile. Seabirds were primarily grouped according to their nesting behaviour, but two species foraging in contrasting habitats (kelp gull and Markham's storm-petrel) were also compared directly. The abundance, type, and polymer of macro-, meso- and microplastics were analysed in the soil of colonies and control sites, and microplastic ingestion was evaluated for selected species. Densities of plastics in colonies of surface-nesting seabirds ranged from 0 to 21.4 items m-2 (mainly plastic bags and thin films), and 0.002 to 19.7 items m-2 (mainly hard fragments) in colonies of burrow-nesting seabirds. Mean microplastic loads in the stomachs of seabirds were between 3.7 ± 4.2 plastic items individual-1. Overall, the abundances of plastic items in all seabird colonies were low, suggesting a limited transfer of plastics from sea to land. For kelp gulls, the results indicate transfer of macroplastic items to colonies, reaching the colony via regurgitates, with landfills considered as the main plastic source. Our results suggest that contrasting nesting behaviour and foraging habitats among species can explain differential plastic accumulation in seabird colonies, but also other factors, such as wind, contribute to the accumulation of plastic debris in colonies. Proper management of sanitary landfills are key to reduce plastic contamination of coastal seabirds and their colonies.


Assuntos
Aves , Ecossistema , Monitoramento Ambiental , Plásticos , Animais , Plásticos/análise , Chile , Charadriiformes/fisiologia , Resíduos/análise , Poluentes Químicos da Água/análise , Microplásticos/análise
19.
Sci Total Environ ; 952: 175910, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39226971

RESUMO

Estimates suggest that the amount of plastic litter discarded in the ocean is several times greater than what remains floating at the sea surface, raising questions about the fate of this marine debris. Fouling-induced sinking of plastic litter is one of the proposed mechanisms responsible for this mass difference. While some of this 'missing' plastic mass may be explained by the effects of fouling, it has also been hypothesized that sinking litter may return to the surface after benthic organisms consume the biofouling. However, this hypothesis has never been tested. The present study evaluated the structure and biomass of the fouling community in response to benthic predation in both summer and winter seasons. Floating PVC plates were installed during winter and summer in central Chile (36°S) until the growing biofouling community caused them to sink. Plates were then moved to the seabed, where they were exposed to benthic predation, while control plates were maintained in a mesh cage impeding predator access. In summer, all plates recovered their buoyancy, while in the winter only 60 % recovered buoyancy. All caged control samples remained on the bottom in both seasons. The community structure differed both in the treatments and across the seasons, with plates that recovered buoyancy initially being dominated by Ulva sp. and Ciona robusta. Conversely, plates that did not refloat were mainly covered by species resistant to predation such as Pyura chilensis, Austromegabalanus psittacus, and Balanus laevis. Thus, fouling community structure influences how predation facilitates buoyancy recovery, because not all epibionts can be consumed by predators. While previous studies had shown how fouling organisms cause sinking of floating litter, this is the first study to provide experimental evidence that predation can reverse this process and allow litter to resurface and become again available as dispersal vectors for native and invasive species.


Assuntos
Incrustação Biológica , Plásticos , Animais , Chile , Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Estações do Ano , Ulva/fisiologia , Comportamento Predatório , Cadeia Alimentar
20.
Sci Total Environ ; 952: 176005, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39236822

RESUMO

Plastics are common synthetic materials that have been abundantly present as pollutants in natural ecosystems for the past few decades. Thus scientists have investigated the capability of plastic digestion by insects. Here we compare the effectiveness of biodegradation of the specific polymers: expanded polystyrene (EPS), polyvinyl chloride (PVC), low-density polyethylene (LDPE) and polypropylene (PP) altogether with above variants of plastics with microelements and vitamins by the mealworm - the larval form of the beetle Tenebrio molitor - and larvae of the beetle Zophobas morio, known as superworms. Z. morio beetles on all diets were able to complete their life cycle from larvae through pupae and imago, gaining 19 % and 22 % in mass on LDPE and EPS; 8 % and 7 % on PVC and PP. Mealworms (T. molitor) reared on polymers had minimal weight gain, gaining 2 % on LDPE and EPS, and a slight reduction in mass was observed when reared on PP and PVC. Not all specimens of T. molitor were able to pupate and transform to the adult stage. The results suggest that larvae of Z. morio can eat and degrade some types of plastic compounds more effectively than T. molitor. The changes in microbial gut communities were compared between these two species. The highest mass gain for Z. morio is associated with higher diversity in gut microbia and it was more diverse than that of T. molitor. Citrobacter freundii, a bacterium recognized for its ability to degrade long-chain polymers, linear hydrocarbons and cyclic hydrocarbons, was found in the microflora of Z. morio. The results confirm that superworms can survive on polymer feed. Moreover, this diet supplemented with microelements and vitamins increases the number of bacterial species and the diversity in the microbial gut.


Assuntos
Microbioma Gastrointestinal , Larva , Tenebrio , Animais , Polímeros , Besouros , Biodegradação Ambiental , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA