Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 53(2): 1065-1075, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35394611

RESUMO

The classical swine fever virus is the etiologic agent of one of the diseases with the greatest impact on swine farming worldwide. An extensive area of Brazil is considered free of the disease, but some states in Northeast Brazil have registered outbreaks since 2001. The objective of this study was to analyze the genetic variations of the virus and its spread over time and space. Partial sequences of the viral E2 protein obtained from samples collected during the Brazilian outbreaks were compared with sequences from the GenBank database (NCBI). The results demonstrated the continuous presence of the virus in the state of Ceará, with diffusion to at least two other states. The Brazilian Northeast virus presents specific polymorphisms that separate it from viruses isolated in other countries.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vírus , Animais , Brasil/epidemiologia , Peste Suína Clássica/epidemiologia , Peste Suína Clássica/genética , Vírus da Febre Suína Clássica/genética , Surtos de Doenças , Filogenia , Suínos , Proteínas Virais/genética
2.
Transbound Emerg Dis ; 66(6): 2362-2382, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31306567

RESUMO

Classical swine fever (CSF), caused by CSF virus (CSFV), is considered one of the most important infectious diseases with devasting consequences for the pig industry. Recent reports describe the emergence of new CSFV strains resulting from the action of positive selection pressure, due mainly to the bottleneck effect generated by ineffective vaccination. Even though a decrease in the genetic diversity of the positively selected CSFV strains has been observed by several research groups, there is little information about the effect of this selective force on the virulence degree, antigenicity and pathogenicity of this type of strains. Hence, the aim of the current study was to determine the effect of the positive selection pressure on these three parameters of CSFV strains, emerged as result of the bottleneck effects induced by improper vaccination in a CSF-endemic area. Moreover, the effect of the positively selected strains on the epidemiological surveillance system was assessed. By the combination of in vitro, in vivo and immunoinformatic approaches, we revealed that the action of the positive selection pressure induces a decrease in virulence and alteration in pathogenicity and antigenicity. However, we also noted that the evolutionary process of CSFV, especially in segregated microenvironments, could contribute to the gain-fitness event, restoring the highly virulent pattern of the circulating strains. Besides, we denoted that the presence of low virulent strains selected by bottleneck effect after inefficient vaccination can lead to a relevant challenge for the epidemiological surveillance of CSF, contributing to under-reports of the disease, favouring the perpetuation of the virus in the field. In this study, B-cell and CTL epitopes on the E2 3D-structure model were also identified. Thus, the current study provides novel and significant insights into variation in virulence, pathogenesis and antigenicity experienced by CSFV strains after the positive selection pressure effect.


Assuntos
Vírus da Febre Suína Clássica/patogenicidade , Peste Suína Clássica/genética , Seleção Genética , Proteínas do Envelope Viral/genética , Animais , Peste Suína Clássica/virologia , Doenças Endêmicas , Evolução Molecular , Vigilância da População , Suínos , Virulência
3.
Vet Microbiol ; 161(3-4): 334-8, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22902191

RESUMO

Identification and classification of classical swine fever virus (CSFV) on the basis of nucleotide sequencing and phylogenetic analysis have become an important tool to study the epidemiology and to control CSF disease. According to phylogenetic analyses of short sequences from the 5'nontranslated region (150 nt) and the E2 (190 nt), most CSFV isolates from South and Central America have been assorted to the subgenotypes 1.1 and 1.3, while CSFV isolates from Cuba have been allocated to subgenotype 1.2. Here we demonstrate that determination and comparison of full-length E2 sequences as well as of the sequences encoding for N(pro), C, E(rns), E1 and E2 (3361 nt) do not support segregation of Cuban CSFV isolates to subgenotype 1.2. In fact, our analysis revealed that the Cuban isolates are more divergent from other so far known CSFV subgenotype 1 isolates and form a novel separate subgenotype that is proposed to be designated subgenotype 1.4.


Assuntos
Vírus da Febre Suína Clássica/classificação , Peste Suína Clássica/virologia , Animais , Sequência de Bases , Peste Suína Clássica/epidemiologia , Peste Suína Clássica/genética , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/isolamento & purificação , Cuba , Filogenia , RNA não Traduzido/genética , RNA Viral/genética , Suínos
4.
Vet Microbiol ; 139(3-4): 245-52, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19577384

RESUMO

Classical swine fever is a highly contagious viral disease causing severe economic losses in pig production almost worldwide. All pestivirus species can infect pigs, therefore accurate and rapid pestivirus detection and differentiation is of great importance to assure control measures in swine farming. Here we describe the development and evaluation of a novel multiplex, highly sensitive and specific RT-PCR for the simultaneous detection and rapid differentiation between CSFV and other pestivirus infections in swine. The universal and differential detection was based on primers designed to amplify a fragment of the 5' non-coding genome region for the detection of pestiviruses and a fragment of the NS5B gene for the detection of classical swine fever virus. The assay proved to be specific when different pestivirus strains from swine and ruminants were evaluated. The analytical sensitivity was estimated to be as little as 0.89TCID(50). The assay analysis of 30 tissue homogenate samples from naturally infected and non-CSF infected animals and 40 standard serum samples evaluated as part of two European Inter-laboratory Comparison Tests conducted by the European Community Reference Laboratory, Hanover, Germany proved that the multiplex RT-PCR method provides a rapid, highly sensitive, and cost-effective laboratory diagnosis for classical swine fever and other pestivirus infections in swine.


Assuntos
Peste Suína Clássica/diagnóstico , Infecções por Pestivirus/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Peste Suína Clássica/genética , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/genética , Primers do DNA/análise , Primers do DNA/genética , Diagnóstico Diferencial , Pestivirus/genética , Infecções por Pestivirus/genética , Sensibilidade e Especificidade , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA