Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.835
Filtrar
1.
Gene ; 932: 148901, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39209181

RESUMO

A previous study on ovarian and hypothalami transcriptome analysis in white Muscovy duck revealed that MAP3K8 gene participated in MAPK signaling pathway that influence egg production. Additionally, MAP3K8 was predicted as a target gene of miRNA-509-3p that promotes the secretion of oestradiol which is an important hormone in egg ovulation. This suggested that MAP3K8 might have a functional role in the reproductive performance "egg production" of white Muscovy ducks. Herein, we focused on expression level of MAP3K8 in reproductive and non-reproductive tissues of highest (HP) and lowest (LP) egg producing white Muscovy ducks and identified the polymorphism in MAP3K8 and its association with three egg production traits; Age at first egg (AFE), number of eggs at 300 days (N300D) and 59 weeks (N59W). The results of expression level indicated that mRNA of MAP3K8 was significantly (p < 0.01) expressed in the oviduct than in the ovary and hypothalamus. Seven synonymous SNPs were detected, and association analysis showed that g.148303340 G>A and g.148290065 A>G were significantly (p < 0.05) associated with N300D and N59W. The results of this study might serve as molecular marker for marker-assisted selection of white Muscovy ducks for egg production.


Assuntos
Patos , Perfilação da Expressão Gênica , MAP Quinase Quinase Quinases , Ovário , Polimorfismo de Nucleotídeo Único , Animais , Patos/genética , Feminino , Ovário/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Hipotálamo/metabolismo , Oviductos/metabolismo
2.
Gene ; 932: 148866, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39153704

RESUMO

DNA meiotic recombinase 1 (disrupted meiotic cDNA, Dmc1) protein is homologous to the Escherichia coli RecA protein, was first identified in Saccharomyces cerevisiae. This gene has been well studied as an essential role in meiosis in many species. However, studies on the dmc1 gene in reptiles are limited. In this study, a cDNA fragment of 1,111 bp was obtained from the gonadal tissues of the Chinese soft-shell turtle via RT-PCR, containing a 60 bp 3' UTR, a 22 bp 5' UTR, and an ORF of 1,029 bp encoding 342 amino acids, named Psdmc1. Multiple sequence alignments showed that the deduced protein has high similarity (>95 %) to tetrapod Dmc1 proteins, while being slightly lower (86-88 %) to fish species.Phylogenetic tree analysis showed that PsDmc1 was clustered with the other turtles' Dmc1 and close to the reptiles', but far away from the teleost's. RT-PCR and RT-qPCR analyses showed that the Psdmc1 gene was specifically expressed in the gonads, and much higher in testis than the ovary, especially highest in one year-old testis. In situ hybridization results showed that the Psdmc1 was mainly expressed in the perinuclear cytoplasm of primary and secondary spermatocytes, weakly in spermatogonia of the testes. These results indicated that dmc1 would be majorly involved in the developing testis, and play an essential role in the germ cells' meiosis. The findings of this study will provide a basis for further investigations on the mechanisms behind the germ cells' development and differentiation in Chinese soft-shell turtles, even in the reptiles.


Assuntos
Gametogênese , Filogenia , Tartarugas , Animais , Feminino , Masculino , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Clonagem Molecular , Gametogênese/genética , Meiose/genética , Ovário/metabolismo , Espermatócitos/metabolismo , Testículo/metabolismo , Tartarugas/genética , Tartarugas/metabolismo
3.
Nat Commun ; 15(1): 8498, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353946

RESUMO

Polycystic ovary syndrome (PCOS) is a heterogeneous condition, defined by oligo-/anovulation, hyper-androgenism and/or polycystic ovaries. Metabolic complications are common in patients suffering PCOS, including obesity, insulin resistance and type-2 diabetes, which severely compromise the clinical course of affected women. Yet, therapeutic options remain mostly symptomatic and of limited efficacy for the metabolic and reproductive alterations of PCOS. We report here the hormonal, metabolic and gonadal responses to the glucagon-like peptide-1 (GLP1)-based multi-agonists, GLP1/Estrogen (GLP1/E), GLP1/gastric inhibitory peptide (GLP1/GIP) and GLP1/GIP/Glucagon, in two mouse PCOS models, with variable penetrance of metabolic and reproductive traits, and their comparison with metformin. Our data illustrate the superior efficacy of GLP1/E vs. other multi-agonists and metformin in the management of metabolic complications of PCOS; GLP1/E ameliorates also ovarian cyclicity in an ovulatory model of PCOS, without direct estrogenic uterotrophic effects. In keeping with GLP1-mediated brain targeting, quantitative proteomics reveals changes in common and distinct hypothalamic pathways in response to GLP1/E between the two PCOS models, as basis for differential efficiency. Altogether, our data set the basis for the use of GLP1-based multi-agonists, and particularly GLP1/E, in the personalized management of PCOS.


Assuntos
Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon , Metformina , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Feminino , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Metformina/uso terapêutico , Metformina/farmacologia , Camundongos , Humanos , Polipeptídeo Inibidor Gástrico/metabolismo , Estrogênios/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Resistência à Insulina , Camundongos Endogâmicos C57BL
4.
Mol Biol (Mosk) ; 58(2): 305-313, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39355887

RESUMO

An RNA interference-based method was proposed to achieve an inducible knockdown of genes essential for cell viability. In the method, a genetic cassette in which a copper ion-dependent inducible metallothionein promoter controls expression of a siRNA precursor is inserted into a genomic pre-integrated transgene by CRIPSR/Cas9 technology. The endogenous siRNA source allows the gene knockdown in cell cultures that are refractory to conventional transfection with exogenous siRNA. The efficiency of the method was demonstrated in Drosophila ovarian somatic cell culture (OSC) for two genes that are essential for oogenesis: Cul3, encoding a component of the multiprotein ubiquitin-ligase complex with versatile functions in proteostasis, and cut, encoding a transcription factor regulating differentiation of ovarian follicular cells.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Animais , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Proteínas Culina/genética , Proteínas Culina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ovário/metabolismo , Ovário/citologia , Oogênese/genética , Interferência de RNA , Genes Essenciais , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
5.
Sci Rep ; 14(1): 20939, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251721

RESUMO

Gustavus, a positive regulator in arthropod reproduction, features a conserved SPRY and a C-terminal SOCS box domain and belongs to the SPSB protein family. The SPSB family, encompassing SPSB1 to SPSB4, plays pivotal roles in higher animals, including immune response, apoptosis, growth, and stress responses. In Neocaridina denticulata sinensis, alternative splicing yielded two NdGustavus isoforms, NdGusX1 and NdGusX2, with distinct expression patterns-high in ovaries and muscles, respectively, and across all ovarian germ cells. These isoforms showed similar expression dynamics during embryogenesis and significant upregulation post-copper ion exposure (P < 0.05). The in situ hybridization result elucidated that NdGusX1 and NdGusX2 were expressed across the germ cell spectrum in the ovary, with NdGusX1 showing enhanced expression in oogonia and primary oocytes. In addition, RNA interference revealed functional complementation in ovaries and potential functional differentiation in muscles. Knockdown of NdGusX1 and NdGusX2 potentially disrupted endogenous vitellogenin synthesis, regulating vitellogenesis and reducing mature oocyte volume, affecting follicular cavity occupation. This study provides a theoretical framework for understanding the biological functions of the SPSB family in crustacean ovarian maturation.


Assuntos
Processamento Alternativo , Ovário , Animais , Feminino , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Oócitos/metabolismo , Vitelogênese/genética , Regulação da Expressão Gênica no Desenvolvimento
6.
J Ovarian Res ; 17(1): 184, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267091

RESUMO

Ovarian insufficiency is one of the common reproductive disorders affecting women with limited therapeutic aids. Mesenchymal stem cells have been investigated in such disorders before yet, the exact mechanism of MSCs in ovarian regeneration regarding their epigenetic regulation remains elusive. The current study is to investigate the role of the bone marrow-derived mesenchymal stem cells (BM-MSCs) lncRNA (Neat-1 and Hotair1) and miRNA (mir-21-5p, mir-144-5p, and mir-664-5p) in mitigating ovarian granulosa cell apoptosis as well as searching BM-MSCs in altering the expression of ovarian and hypothalamic IGF-1 - kisspeptin system in connection to HPG axis in a cyclophosphamide-induced ovarian failure rat model. Sixty mature female Sprague Dawley rats were divided into 3 equal groups; control group, premature ovarian insufficiency (POI) group, and POI + BM-MSCs. POI female rat model was established with cyclophosphamide. The result revealed that BM-MSCs and their conditioned media displayed a significant expression level of Neat-1, Hotair-1, mir-21-5p, mir-144-5p, and mir-664-5p. Moreover, BM-MSCs transplantation in POI rats improves; the ovarian and hypothalamic IGF-1 - kisspeptin, HPG axis, ovarian granulosa cell apoptosis, steroidogenesis, angiogenesis, energy balance, and oxidative stress. BM-MSCs expressed higher levels of antiapoptotic lncRNAs and microRNAs that mitigate ovarian insufficiency.


Assuntos
Apoptose , Ciclofosfamida , Fator de Crescimento Insulin-Like I , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , RNA Longo não Codificante , Ratos Sprague-Dawley , Animais , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ciclofosfamida/efeitos adversos , Ratos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/induzido quimicamente , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Ovário/metabolismo , Células da Medula Óssea/metabolismo , Angiogênese
7.
Reprod Domest Anim ; 59(9): e14723, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39311634

RESUMO

TKTL1 is a crucial regulatory enzyme in the pentose phosphate pathway (PPP) and plays a significant role in energy synthesis. It is expressed in various tumour tissues, with its expression level closely associated with tumour invasion, metastasis and prognosis. Recent studies utilising proteomic analysis and other methods have highlighted the noteworthy expression of the TKTL1 gene in germ cells, particularly in spermatogonia and ovarian cells. Consequently, this article reviews the molecular characteristics of TKTL1 and its expression in germ cells to provide a reference for research on TKTL1 beyond tumour cells.


Assuntos
Transcetolase , Animais , Feminino , Masculino , Transcetolase/genética , Transcetolase/metabolismo , Humanos , Células Germinativas/metabolismo , Ovário/metabolismo
8.
Mol Biol Rep ; 51(1): 1008, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312076

RESUMO

BACKGROUND: Oxidative damage to the ovaries is the primary cause of impaired reproductive functions in female animals. This study aimed to investigate the protective role of N-Acetyl-L-cysteine (NAC) in reducing oxidative damage in the ovaries of female rabbits. METHODS AND RESULTS: Female rabbit ovaries were treated in vitro with varying concentrations of D-galactose (D-gal): 0, 5, 10, and 15 mg/mL, and it was found that 10 mg/mL D-gal significantly disrupted follicular structures, causing disarray in granulosa cell arrangements and significantly reducing T-SOD and GSH levels (p < 0.01). Consequently, we selected 10 mg/mL D-gal to establish an ovarian failure model. These models were treated with multiple doses of NAC (0, 0.1, 0.3, 0.5 mg/mL). The results revealed that the disruption in granulosa cell arrangement caused by 10 mg/mL D-gal was effectively alleviated by 0.1 mg/mL NAC compared to the D-gal treatment group. Furthermore, 10 mg/mL D-gal significantly (p < 0.01) reduced GSH, T-SOD, and catalase (CAT) levels in the ovaries. However, 0.1 mg/mL NAC effectively (p < 0.01) suppressed these adverse effects. Moreover, the current results showed that 10 mg/mL D-gal alone significantly (p < 0.01) downregulated the expression of Nrf2, GPX, PRDX4, GSR, SOD1, and TAF4B, whereas 0.1 mg/mL NAC counteracted these suppressive effects (p < 0.01). CONCLUSIONS: It could be concluded that NAC may delay ovarian failure by reducing D-gal-induced ovarian oxidative damage in female rabbit, suggested NAC could be a promising therapeutic agent for protecting against ovarian failure and potentially delaying ovarian failure in female rabbits.


Assuntos
Acetilcisteína , Galactose , Ovário , Estresse Oxidativo , Animais , Coelhos , Feminino , Acetilcisteína/farmacologia , Galactose/efeitos adversos , Galactose/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/patologia , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças
9.
Nature ; 633(8030): 608-614, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39261734

RESUMO

Human genetic studies of common variants have provided substantial insight into the biological mechanisms that govern ovarian ageing1. Here we report analyses of rare protein-coding variants in 106,973 women from the UK Biobank study, implicating genes with effects around five times larger than previously found for common variants (ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1). The SAMHD1 association reinforces the link between ovarian ageing and cancer susceptibility1, with damaging germline variants being associated with extended reproductive lifespan and increased all-cause cancer risk in both men and women. Protein-truncating variants in ZNF518A are associated with shorter reproductive lifespan-that is, earlier age at menopause (by 5.61 years) and later age at menarche (by 0.56 years). Finally, using 8,089 sequenced trios from the 100,000 Genomes Project (100kGP), we observe that common genetic variants associated with earlier ovarian ageing associate with an increased rate of maternally derived de novo mutations. Although we were unable to replicate the finding in independent samples from the deCODE study, it is consistent with the expected role of DNA damage response genes in maintaining the genetic integrity of germ cells. This study provides evidence of genetic links between age of menopause and cancer risk.


Assuntos
Envelhecimento , Predisposição Genética para Doença , Menopausa , Taxa de Mutação , Neoplasias , Ovário , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento/genética , Envelhecimento/patologia , Dano ao DNA/genética , Fertilidade/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genoma Humano/genética , Mutação em Linhagem Germinativa/genética , Menarca/genética , Menopausa/genética , Neoplasias/genética , Ovário/metabolismo , Ovário/patologia , Fatores de Tempo , Biobanco do Reino Unido , Reino Unido/epidemiologia
10.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337386

RESUMO

The ovary is a crucial reproductive organ in mammals, and its development directly influences an individual's sexual maturity and reproductive capacity. To comprehensively describe ovarian sexual maturation in goats, we integrated phenotypic, hormonal, metabolomic, and transcriptomic data from four specific time points: after birth (D1), at 2 months old (M2), at 4 months old (M4), and at 6 month old (M6). The study showed that during the early stage (D1-M2), ovarian growth was the most rapid, with weight and morphology increasing by 284% and 65%, respectively, and hormone levels rose significantly, with estradiol increasing by 57%. Metabolomic analysis identified 1231 metabolites, primarily lipids, lipid molecules, and organic acids, which can support hormone balance and follicle development by providing energy and participating in signaling transduction. Transcriptomic analysis identified 543 stage-specific differentially expressed genes, mainly enriched in steroid biosynthesis, amino acid metabolism, and the PI3K/AKT pathway, which are key factors influencing ovarian cell proliferation, apoptosis, hormone secretion, and metabolism. The integrated analysis revealed the key processes in the ovarian steroid hormone biosynthesis pathway and gene/metabolite networks associated with ovarian phenotypes and hormone levels, ultimately highlighting scavenger receptor class B type 1 (SCARB1), Cytochrome P450 Family 1 Subfamily A Member 1 (CYP11A1), 3beta-hydroxysteroid dehydrogenase (3BHSD), progesterone, estradiol, and L-phenylalanine as key regulators of ovarian morphological and functional changes at different developmental stages. This study is the first to reveal the metabolic changes and molecular regulatory mechanisms during ovarian sexual maturation in goats, providing valuable insights for understanding reproductive system development and optimizing reproductive performance and breeding efficiency.


Assuntos
Cabras , Metabolômica , Ovário , Maturidade Sexual , Animais , Feminino , Cabras/crescimento & desenvolvimento , Cabras/genética , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Maturidade Sexual/genética , Metabolômica/métodos , Transcriptoma , Perfilação da Expressão Gênica/métodos , Metaboloma
11.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337394

RESUMO

The aging ovary in mammals leads to the reduced production of sex hormones and a deterioration in follicle quality. The interstitial gland originates from the hypertrophy of the theca cells of atretic follicles and represents an accumulative structure of the ovary that may contribute to its aging. Here, reproductive and mature rabbit ovaries are used to determine whether the interstitial gland plays a crucial role in ovarian aging. We demonstrate that, in the mature ovary, interstitial gland cells accumulate lipid droplets and show ultrastructural characteristics of lipophagy. Furthermore, they undergo modifications and present a foamy appearance, do not express the pan-leukocyte CD-45 marker, and express CYP11A1. These cells are the first to present an increase in lipofuscin accumulation. In foamy cells, the expression of p21 remains low, PCNA expression is maintained at mature ages, and their nuclei do not show positivity for H2AX. The interstitial gland shows a significant increase in lipofuscin accumulation compared with the ovaries of younger rabbits, but lipofuscin accumulation remains constant at mature ages. Surprisingly, no accumulation of cells with DNA damage is evident, and an increase in proliferative cells is observed at the age of 36 months. We suggest that the interstitial gland initially uses lipophagy to maintain steroidogenic homeostasis and prevent cellular senescence.


Assuntos
Envelhecimento , Senescência Celular , Lipofuscina , Ovário , Animais , Feminino , Coelhos , Envelhecimento/metabolismo , Ovário/metabolismo , Ovário/citologia , Lipofuscina/metabolismo , Chinchila , Células Tecais/metabolismo , Folículo Ovariano/metabolismo , Folículo Ovariano/citologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Dano ao DNA
12.
Mar Drugs ; 22(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39330276

RESUMO

Cyclophosphamide (CP) is an anticancer drug that causes infertility disorders. This study was designed to evaluate a nanoformulation of chitosan with an ethanolic extract from Spirulina platensis in terms of its protection against cyclophosphamide-induced ovarian toxicity. Nine groups of female Wistar rats were randomly assigned as follows: 1: control vehicle, 2: chitosan polymer, 3: telmisartan, 4: Spirulina platensis extract, 5: nanoformulation of the Spirulina platensis, and 6: single injection of CP; groups 7, 8, and 9 received the same treatments as those used in groups 3, 4, and 5, respectively, with a single dose of CP (200 mg/kg, I.P). The results displayed that the CP treatment decreased estradiol, progesterone, anti-mullerian hormone, and GSH content, and it downregulated PPAR-γ, Nrf-2, and HO-1 gene expression. In addition, the CP treatment caused an increase in the FSH, LH, and MDA levels. In the same manner, the protein expression of caspase-3, NF-kB, and TNF-α was upregulated in response to the CP treatment, while PPAR-γ was downregulated in comparison with the control. The rats treated with SPNPs exhibited a substantial reduction in the detrimental effects of oxidative stress and inflammation of the ovarian tissue. This study's conclusions showed that SPNPs counteracted the effects of CP, preventing the death of ovarian follicles and restoring the gonadotropin hormone balance and normal ovarian histological appearance.


Assuntos
Quitosana , Ciclofosfamida , Fator 2 Relacionado a NF-E2 , NF-kappa B , Ovário , PPAR gama , Fator de Necrose Tumoral alfa , Animais , Feminino , Ratos , Quitosana/química , Quitosana/farmacologia , Ciclofosfamida/toxicidade , Etanol/química , Heme Oxigenase (Desciclizante)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ovário/efeitos dos fármacos , Ovário/patologia , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Spirulina , Fator de Necrose Tumoral alfa/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(37): e2401752121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226347

RESUMO

Ovarian development was traditionally recognized as a "default" sexual outcome and therefore received much less scientific attention than testis development. In turtles with temperature-dependent sex determination (TSD), how the female pathway is initiated to induce ovary development remains unknown. In this study, we have found that phosphorylation of the signal transducer and activator of transcription 3 (pSTAT3) and Foxl2 exhibit temperature-dependent sexually dimorphic patterns and tempo-spatial coexpression in early embryos of the red-eared slider turtle (Trachemys scripta elegans). Inhibition of pSTAT3 at a female-producing temperature of 31 °C induces 64.7% female-to-male sex reversal, whereas activation of pSTAT3 at a male-producing temperature of 26 °C triggers 75.6% male-to-female sex reversal. In addition, pSTAT3 directly binds to the locus of the female sex-determining gene Foxl2 and promotes Foxl2 transcription. Overexpression or knockdown of Foxl2 can rescue the sex reversal induced by inhibition or activation of pSTAT3. This study has established a direct genetic link between warm temperature-induced STAT3 phosphorylation and female pathway initiation in a TSD system, highlighting the critical role of pSTAT3 in the cross talk between female and male pathways.


Assuntos
Fator de Transcrição STAT3 , Processos de Determinação Sexual , Temperatura , Tartarugas , Animais , Feminino , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Masculino , Fosforilação , Tartarugas/metabolismo , Tartarugas/genética , Tartarugas/embriologia , Ovário/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Proteína Forkhead Box L2/metabolismo , Proteína Forkhead Box L2/genética , Regulação da Expressão Gênica no Desenvolvimento
14.
Commun Biol ; 7(1): 1154, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284885

RESUMO

Fish sex is largely influenced by steroid hormones, especially sex hormones. Here, we established a steroid hormone-free genetic model by mutation of cyp11a1 in Nile tilapia, which was confirmed by EIA assay. Gonadal phenotype and transcriptome analyses showed that the XX mutants displayed sex reversal from female to male but with defective spermatogenesis. Despite the sex reversal, the aromatase encoding gene cyp19a1a was continuously expressed in the gonads of the XX mutants, which might be caused by androgen deficiency. Whole-mount fluorescence in situ hybridization and transcriptome analysis showed that the gonads of the XX mutants firstly developed towards ovary but shifted to testis between 10 to 15 days after hatching. Detailed expression analysis of key sex differentiation pathway genes foxl3 and dmrt1 combined with apoptosis analysis revealed transdifferentiation of germ cells from female to male during sex reversal. Rescue experiments showed that both P5 and E2 treatment rescued the sex reversal of cyp11a1 mutant XX fish. Overall, our results revealed a transient ovary-like stage and transdifferentiation of germ cells from female to male in the early gonads of the steroid hormone-deprived cyp11a1 mutant XX fish.


Assuntos
Mutação , Ovário , Diferenciação Sexual , Animais , Feminino , Ovário/metabolismo , Masculino , Diferenciação Sexual/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Transtornos do Desenvolvimento Sexual/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Tilápia/genética , Tilápia/metabolismo , Processos de Determinação Sexual/genética
15.
Mol Med ; 30(1): 150, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272008

RESUMO

Cis-dichlorodiammineplatinum(II) (CDDP), while widely utilized in tumor therapy, results in toxic side effects that patients find intolerable. The specific mechanism by which CDDP inflicts ovarian damage remains unclear. This study aimed to explore the involvement of ferrostatin-1 (FER-1) and ferroptosis in CDDP-induced ovarian toxicity. This study established models of CDDP-induced injury in granulosa cells (GCs) and rat model of premature ovarian failure (POF). CCK-8 assessed the effects of CDDP and FER-1 on GC viability. FerroOrange and Mito-FerroGreen, DCFH-DA and MitoSox-Red, Rhodamine 123 and Transmission electron microscopy (TEM) measured Fe2+, reactive oxygen species (ROS), mitochondrial membrane potential and the mitochondrial morphology in GC cells, respectively. Serum hormone levels; organ indices; malondialdehyde, superoxide dismutase, and glutathione analyses; and western blotting were performed to examine ferroptosis's role in vitro. Molecular docking simulation was evaluated the interaction between FER-1 and GPX4 or FER-1 and NRF2. Molecular docking simulations were conducted to evaluate the interactions between FER-1 and GPX4, as well as FER-1 and NRF2. The findings revealed that CDDP-induced ovarian toxicity involved iron accumulation, increased ROS accumulation, and mitochondrial dysfunction, leading to endocrine disruption and tissue damage in rats. These changes correlated with NRF2, HO-1, and GPX4 levels. However, FER-1 decreased the extent of ferroptosis. Thus, ferroptosis appears to be a crucial mechanism of CDDP-induced ovarian injury, with GPX4 as potential protective targets.


Assuntos
Cisplatino , Cicloexilaminas , Ferroptose , Simulação de Acoplamento Molecular , Fenilenodiaminas , Espécies Reativas de Oxigênio , Animais , Feminino , Ferroptose/efeitos dos fármacos , Cicloexilaminas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Cisplatino/efeitos adversos , Fenilenodiaminas/farmacologia , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos Sprague-Dawley , Modelos Animais de Doenças , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
16.
J Obstet Gynaecol Res ; 50(10): 1945-1951, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39225708

RESUMO

OBJECTIVE: To investigate the independent effects of irisin on insulin resistance (IR) in ovary of polycystic ovary syndrome (PCOS) and explore possible pathways. METHODS: We established PCOS medel using Poretsky L's method, then PCOS rats were randomly divided into model group (M) and irisin group (I), and normal rats (N) were used as the control. Then rats in the group I were injected with recombinant irisin. Then the levels of circulating fasting blood glucose (FBG), fasting insulin (FINS), homeostasis model assessment of IR (HOMA-IR) and PI3K/AKT and MAPK/ERK pathways in each group were observed, as well as the effects of irisin on the levels of circulating HOMA-IR and PI3K/AKT and MAPK/ERK pathways in ovary of PCOS rats were evaluated. RESULTS: Compared with normal group, levels of FBG, FINS, and HOMA-IR of model group were significantly increased (p < 0.001, p < 0.001, and p < 0.001, respectively), levels of average optical density by IHC of p-PI3K, PI3K, p-AKT, and AKT (p = 0.015, p = 0.010, p = 0.005, and p = 0.009, respectively) and levels of mRNA concentration of PI3K and AKT (p = 0.001, and p = 0.005, respectively) were decreased, while the levels of average optical density of p-ERK, ERK (p = 0.011, and p = 0.013, respectively) and level of mRNA concentration of ERK (p < 0.001) were increased in ovary. After irisin intervention, compared with model group, levels of FBG, FINS, and HOMA-IR of rats in irisin group were significantly decreased (p = 0.001, p < 0.001, and p < 0.001, respectively), levels of average optical density by IHC of p-PI3K, PI3K, p-AKT, and AKT (p = 0.030, p = 0.024, p = 0.012, and p = 0.025, respectively) and levels of mRNA concentration of PI3K and AKT (p = 0.002, and p = 0.003, respectively) were significantly increased, while the levels of average optical density of p-ERK, ERK (p = 0.004, and p = 0.026, respectively) and level of mRNA concentration of ERK (p = 0.001) were significantly decreased. CONCLUSION: Our study demonstrated that irisin could not only improve circulating insulin resistance, but may also improve ovarian IR through an increase in the activity of PI3K/AKT signaling and a decrease of MAPK/ERK signaling.


Assuntos
Fibronectinas , Resistência à Insulina , Sistema de Sinalização das MAP Quinases , Ovário , Síndrome do Ovário Policístico , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Síndrome do Ovário Policístico/metabolismo , Fibronectinas/metabolismo , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ovário/metabolismo , Ovário/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
17.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39337598

RESUMO

Radiotherapy is one of the risk factors for radiation-induced premature ovarian failure and infertility in cancer patients. The development of methods for ovarian radioprotection remains relevant. Moreover, electrons are a little-studied and promising method of radiation with the least toxic effect on normal tissues. The assessment of intracellular mechanisms regulating the protective effects of leukocyte-poor platelet-rich plasma in a model of radiation-induced premature ovarian failure caused by electron irradiation. Wistar rats were divided into four groups, namely a control group, irradiation group (electron exposure), irradiation + leukocyte-poor platelet-rich plasma group, and only leukocyte-poor platelet-rich plasma group. Fragments of ovaries were removed and hormonal, oxidant, histological, and morphometric studies were carried out. The cell cycle of ovarian follicles and the inflammatory and vascular response were assessed using immunohistochemistry. The activity of MAPK, ERK, and PI3K pathways was also assessed using the RT-qPCR. We found that electron irradiation causes a decrease in the functional activity of the ovaries and the death of follicular cells through apoptosis. The administration of LP-PRP led to a partial restoration of the cytokine balance. In addition, minor ovarian damage and mild inflammation were observed in this group. Leukocyte-poor platelet-rich plasma components have anti-inflammatory, angiogenetic, and radioprotective effects, reducing the activation of the NOX4, caspase and cytokine cascades, and inflammatory response severity through the MAPK/p38/JNK signaling pathway. This leads to the induction of endogenous antioxidant protection, the repair of post-radiation follicular damage, and slowing down the development of radiation-induced premature ovarian failure after electron irradiation.


Assuntos
Elétrons , Plasma Rico em Plaquetas , Insuficiência Ovariana Primária , Ratos Wistar , Feminino , Insuficiência Ovariana Primária/etiologia , Insuficiência Ovariana Primária/metabolismo , Animais , Plasma Rico em Plaquetas/metabolismo , Ratos , Ovário/efeitos da radiação , Ovário/metabolismo , Ovário/patologia , Apoptose/efeitos da radiação , Protetores contra Radiação/farmacologia , Folículo Ovariano/metabolismo , Folículo Ovariano/efeitos da radiação , Citocinas/metabolismo
18.
FASEB J ; 38(18): e70062, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39305125

RESUMO

Polycystic ovary syndrome (PCOS) is associated with impaired adipose tissue physiology. Elevated brown adipose tissue (BAT) mass or activity has shown potential in the treatment of PCOS. In this study, we aimed to investigate whether BAT-derived exosomes (BAT-Exos), as potential biomarkers of BAT activity, exert similar benefits as BAT in the treatment of PCOS. PCOS was induced in female C57BL/6J mice orally administered 1 mg/kg of letrozole for 21 days. Subsequently, the animals underwent transplantation with BAT or administered BAT-Exos (200 µg) isolated from young healthy mice via the tail vein; healthy female mice were used as controls. The results indicate that BAT-Exos treatment significantly reduced body weight and improved insulin resistance in PCOS mice. In addition, BAT-Exos improved ovulation function by reversing the acyclicity of the estrous cycle, decreasing circulating luteinizing hormone and testosterone, recovering ovarian performance, and improving oocyte quality, leading to a higher pregnancy rate and litter size. Furthermore, western blotting revealed reduced expression of signal transducer and activator of transcription 3 (STAT3) and increased expression of glutathione peroxidase 4 (GPX4) in the ovaries of mice in the BAT-Exos group. To further explore the role of the STAT3/GPX4 signaling pathway in PCOS mice, we treated the mice with an intraperitoneal injection of 5 mg/kg stattic, a STAT3 inhibitor. Consistent with BAT-Exos treatment, the administration of stattic rescued letrozole-induced PCOS phenotypes. These findings suggest that BAT-Exos treatment might be a potential therapeutic strategy for PCOS and that the STAT3/GPX4 signaling pathway is a critical therapeutic target for PCOS.


Assuntos
Tecido Adiposo Marrom , Exossomos , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Síndrome do Ovário Policístico , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Feminino , Camundongos , Tecido Adiposo Marrom/metabolismo , Exossomos/metabolismo , Resistência à Insulina , Letrozol/farmacologia , Ovário/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/terapia , Fator de Transcrição STAT3/metabolismo
19.
Food Funct ; 15(19): 9779-9795, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224078

RESUMO

Reproductive aging in female mammals is characterized by ovarian senescence, leading to a significant fertility decline. Lycium barbarum berry, or goji berry, is a food and medicine that appears in various formulas for treating infertility in traditional Chinese medicine. We investigated the function of an aqueous extract of Lycium barbarum berry (LB extract) to improve health status, fertility, and offspring development during female aging. Aged female mice were supplemented with LB extract, and its effects on fertility, locomotor activity, and offspring development were assessed. The results demonstrated that LB extract significantly increased pregnancy and live birth rates in naturally aged female mice. It also effectively improved aged animals' locomotor activity. Moreover, LB extract promoted the growth and development of offspring delivered from the aged animals and reduced the offspring's anxiety. During aging, fertility-related hormones gradually decline. However, the decline of anti-Müllerian hormone (AMH) and estradiol (E2) in the serum of aged mice was restored by LB extract supplementation. Immunohistochemical analysis revealed that the levels of oxidation and the inflammatory IL-6 in intra-ovarian cells were reduced by LB extract, while the antioxidant-associated proteins peroxiredoxin 4 (PRDX4) and nuclear factor erythroid 2-related factor 2 (NRF2) were increased. Bioinformatics analysis revealed a decline in egg PRDX4 expression with age across various species. This suggests that the antioxidant function protected by LB extract through PRDX4 may consistently promote fertility enhancement by improving ovarian function across different species. Importantly, LB extract did not induce significant adverse effects on aged female mice and their offspring. These findings highlight the potential of LB as a protective agent against ovarian oxidative stress, which preserves ovarian function and improves fertility rates in naturally senescent females.


Assuntos
Envelhecimento , Fertilidade , Frutas , Lycium , Ovário , Estresse Oxidativo , Extratos Vegetais , Animais , Feminino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Lycium/química , Ovário/metabolismo , Ovário/efeitos dos fármacos , Extratos Vegetais/farmacologia , Fertilidade/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Frutas/química , Gravidez , Antioxidantes/farmacologia
20.
BMC Vet Res ; 20(1): 439, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342193

RESUMO

The current study presents the analysis of stromal cells obtained from an hyperplastic left-ovary of a Holstein cow. Cultured hyperplastic stromal cells displayed a fibroblast-like morphology and ceased proliferation after the 8th passage. The non-cancerous nature of stromal cells was confirmed by in vitro cell proliferation and migration assays. Negligible amounts of E2 were detected in the spent media of cultured stromal cells, which suggests that stromal cells were non-estradiol synthesizing cells. As revealed in immunofluorescence and gene expression analysis, the hyperplastic stromal cells explicitly expressed vimentin in their cytoskeleton. Upon hematoxylin staining, a highly dense population of stromal cells was observed in the stromal tissue of the hyperplastic ovary. To explore genome-wide alterations, mRNA microarray analysis was performed using Affymetrix Bovine Gene 1.0ST Arrays compared to normal ovarian derived stromal cells. The microarray identified 1396 differentially expressed genes, of which 733 were up- and 663 down-regulated in hyperplastic stromal cells. Importantly, asporin (ASPN) and vascular cell adhesion molecule 1 (VCAM1) were among the highly up-regulated genes. Higher expression of ASPN was also confirmed by immunohistochemistry and RT-qPCR analysis. Ingenuity pathway analysis (IPA) identified about 98 significantly enriched (-log (p value ≥ 1.3) canonical pathways, importantly of which the "Sirutin Signaling Pathway" and "Mitochondrial Dysfunction" were highly activated while "Oxidative phosphorylation" was inhibited. Additionally, higher proportion of hyperplastic stromal cells in the S-phase of cell cycle, could be attributed to higher expression levels of cell proliferation genes such as CCND2 and CDK6.


Assuntos
Ovário , Células Estromais , Animais , Feminino , Células Estromais/metabolismo , Células Estromais/patologia , Bovinos , Ovário/patologia , Ovário/metabolismo , Hiperplasia/veterinária , Hiperplasia/genética , Doenças dos Bovinos/genética , Doenças dos Bovinos/patologia , Proliferação de Células , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/veterinária , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA