Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Mol Res ; 14(4): 13289-99, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26535642

RESUMO

The aim of the present study was to isolate and characterize novel nitrate reductase (NR)-deficient mutants, which may be useful for the transgenic manipulation of Dunaliella salina. Three NR-deficient mutants of D. salina, J-1, J-2, and J-3, were successfully isolated by screening for chlorate resistance after chemical mutagenesis with ethylnitrosourea. NR activity was not detected in the mutants and the expression of NR mRNA was significantly decreased. Growth analysis of D. salina strains grown in media containing different nitrogen sources revealed that these mutants were capable of utilizing nitrite and urea, but not nitrate as a nitrogen source, indicating that these mutants are indeed NR-deficient. Mutation analysis of NR cDNA sequences revealed that there were 11 point mutations shared by the J-1, J-2, and J-3 mutants. Furthermore, the results of the functional complementation experiment showed that NR activity of transformant T-1 derived from J-1 was recovered to 48.1 % of that of the wild-type D. salina. The findings of the present study indicate that nitrate may be used as a selective agent rather than antibiotics or herbicides for the isolated NR-deficient mutants in future transgenic D. salina systems.


Assuntos
Clorófitas/genética , Mutação , Nitrato Redutase/deficiência , Nitrato Redutase/genética , Substituição de Aminoácidos , Clorófitas/metabolismo , Expressão Gênica , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética
2.
Plant Cell Physiol ; 49(7): 1112-21, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18540030

RESUMO

The nitrate reductase (NR)-defective double mutant of Arabidopsis thaliana (nia1 nia2) has previously been shown to present a low endogenous content of NO in its leaves compared with the wild-type plants. In the present study, we analyzed the effect of NR mutation on floral induction and development of A. thaliana, as NO was recently described as one of the signals involved in the flowering process. The NO fluorescent probes diaminofluorescein-2 diacetate (DAF-2DA) and 1,2-diaminoanthraquinone (1,2-DAA) were used to localize NO production in situ by fluorescence microscopy in the floral structures of A. thaliana during floral development. Data were validated by incubating the intact tissues with DAF-2 and quantifying the DAF-2 triazole by fluorescence spectrometry. The results showed that NO is synthesized in specific cells and tissues in the floral structure and its production increases with floral development until anthesis. In the gynoecium, NO synthesis occurs only in differentiated stigmatic papillae of the floral bud, and, in the stamen, only anthers that are producing pollen grains synthesize NO. Sepals and petals do not show NO production. NR-deficient plants emitted less NO, although they showed the same pattern of NO emission in their floral organs. This mutant blossomed precociously when compared with wild-type plants, as measured by the increased caulinar/rosette leaf number and the decrease in the number of days to bolting and anthesis, and this phenotype seems to result from the markedly reduced NO levels in roots and leaves during vegetative growth. Overall, the results reveal a role for NR in the flowering process.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Flores/enzimologia , Flores/crescimento & desenvolvimento , Nitrato Redutase/deficiência , Óxido Nítrico/biossíntese , Antraquinonas/metabolismo , Fluoresceína/metabolismo , Mutação/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA