Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.552
Filtrar
1.
Biomaterials ; 313: 122768, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39232332

RESUMO

As the most prominent and ideal modality in female fertility preservation, ovarian tissue cryopreservation, and transplantation often confront the challenge of ischemic damage and follicular loss from avascular transplantation. To surmount this impediment, we engineered a novel platelet-derived factors-encapsulated fibrin hydrogel (PFH), a paradigmatic biomaterial. PFH encapsulates autologous platelet-derived factors, utilizing the physiological blood coagulation cascade for precise local delivery of bioactive molecules. In our study, PFH markedly bolstered the success of avascular ovarian tissue transplantation. Notably, the quantity and quality of follicles were preserved with improved neovascularization, accompanied by decreased DNA damage, increased ovulation, and superior embryonic development rates under a Low-concentration Platelet-rich plasma-derived factors encapsulated fibrin hydrogel (L-PFH) regimen. At a stabilized point of tissue engraftment, gene expression analysis mirrored normal ovarian tissue profiles, underscoring the effectiveness of L-PFH in mitigating the initial ischemic insult. This autologous blood-derived biomaterial, inspired by nature, capitalizes on the blood coagulation cascade, and combines biodegradability, biocompatibility, safety, and cost-effectiveness. The adjustable properties of this biomaterial, even in injectable form, extend its potential applications into the broader realm of personalized regenerative medicine. PFH emerges as a promising strategy to counter ischemic damage in tissue transplantation, signifying a broader therapeutic prospect. (197 words).


Assuntos
Preservação da Fertilidade , Hidrogéis , Isquemia , Neovascularização Fisiológica , Ovário , Feminino , Animais , Preservação da Fertilidade/métodos , Neovascularização Fisiológica/efeitos dos fármacos , Ovário/efeitos dos fármacos , Hidrogéis/química , Isquemia/terapia , Humanos , Fibrina/química , Plasma Rico em Plaquetas/metabolismo
2.
Biomaterials ; 313: 122803, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39232334

RESUMO

Bacteria-infected wounds pose challenges to healing due to persistent infection and associated damage to nerves and vessels. Although sonodynamic therapy can help kill bacteria, it is limited by the residual oxidative stress, resulting in prolonged inflammation. To tackle these barriers, novel 4 octyl itaconate-coated Li-doped ZnO/PLLA piezoelectric composite microfibers are developed, offering a whole-course "targeted" treatment under ultrasound therapy. The inclusion of Li atoms causes the ZnO lattice distortion and increases the band gap, enhancing the piezoelectric and sonocatalytic properties of the composite microfibers, collaborated by an aligned PLLA conformation design. During the infection and inflammation stages, the piezoelectric microfibers exhibit spatiotemporal-dependent therapeutic effects, swiftly eliminating over 94.2 % of S. aureus within 15 min under sonodynamic therapy. Following this phase, the microfibers capture reactive oxygen species and aid macrophage reprogramming, restoring mitochondrial function, achieving homeostasis, and shortening inflammation cycles. As the wound progresses through the healing stages, bioactive Zn2+ and Li + ions are continuously released, improving cell recruitment, and the piezoelectrical stimulation enhances wound recovery with neuro-vascularization. Compared to commercially available dressings, our microfibers accelerate the closure of rat wounds (Φ = 15 mm) without scarring in 12 days. Overall, this "one stone, four birds" wound management strategy presents a promising avenue for infected wound therapy.


Assuntos
Terapia por Ultrassom , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Terapia por Ultrassom/métodos , Ratos Sprague-Dawley , Ratos , Staphylococcus aureus/efeitos dos fármacos , Óxido de Zinco/química , Camundongos , Estimulação Elétrica , Masculino , Infecções Estafilocócicas/terapia , Poliésteres/química , Espécies Reativas de Oxigênio/metabolismo , Terapia por Estimulação Elétrica/métodos , Neovascularização Fisiológica/efeitos dos fármacos
3.
BMC Oral Health ; 24(1): 1109, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294639

RESUMO

BACKGROUND: Tongue defects have several etiologies and significantly affect the quality of life. This study was conducted to compare the regenerative potential of erythropoietin (EPO)-loaded hydrogel and adipose derived stem cell (ADSC) secretome on tongue dorsum defects focusing on the role of anti-inflammatory M2 macrophage phenotype. METHODS: Rats were subjected to induction of mechanical circular defects on the dorsal surface of the tongue, then divided into three groups; Group I (control): received 0.1 ml phosphate buffered saline, Group II (EPO): received 5000 U/kg EPO-hydrogel, and Group III (ADSC-Secretome): received 0.1 ml ADSC-Secretome. Treatments were injected circumferentially around wound margins after induction. Seven and fourteen days after treatment, specimens were obtained and processed for histological and immunohistochemical staining followed by the relevant histomorphometric and statistical analyses. RESULTS: Seven days after treatment, groups II and III presented defects with some epithelial regeneration at the lateral margins, while the center of the defect showed granulation tissue with much inflammatory cells. The base of the defects showed some muscle fibers and new blood vessels, however group III showed more enhanced neovascularization. Fourteen days after therapeutic intervention, group II defects were completely covered with epithelium showing a thin keratin layer with regular rete pegs interdigitating with the underlying connective tissue papillae, but tongue papillae were not restored. Group III expressed much better healing with developing filiform papillae. The connective tissue showed more vascularity and well-arranged muscle bundles. Both treated groups showed a significant decrease in defect depth and significant increase in anti-inflammatory macrophages compared to the control group at both time intervals, however there was no significant difference between the two treated groups. CONCLUSION: Both treatments showed promising and comparable results in the treatment of tongue defects reducing inflammation and restoring tongue histological architecture with significant upregulation of M2 macrophage.


Assuntos
Tecido Adiposo , Eritropoetina , Hidrogéis , Regeneração , Língua , Animais , Ratos , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Regeneração/efeitos dos fármacos , Língua/patologia , Tecido Adiposo/citologia , Masculino , Cicatrização/efeitos dos fármacos , Secretoma , Ratos Wistar , Neovascularização Fisiológica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos
4.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39337435

RESUMO

Severe burns are one of the most devastating injuries, in which sustained inflammation and ischemia often delay the healing process. Pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF) have been widely studied for promoting wound healing. However, the short half-life and instability of VEGF limit its clinical applications. In this study, we develop a photo-crosslinked hydrogel wound dressing from methacrylate hyaluronic acid (MeHA) bonded with a pro-angiogenic prominin-1-binding peptide (PR1P). The materials were extruded in wound bed and in situ formed a wound dressing via exposure to short-time ultraviolet radiation. The study shows that the PR1P-bonded hydrogel significantly improves VEGF recruitment, tubular formation, and cell migration in vitro. Swelling, Scanning Electron Microscope, and mechanical tests indicate the peptide does not affect the overall mechanical and physical properties of the hydrogels. For in vivo studies, the PR1P-bonded hydrogel dressing enhances neovascularization and accelerates wound closure in both deep second-degree burn and full-thickness excisional wound models. The Western blot assay shows such benefits can be related to the activation of the VEGF-Akt signaling pathway. These results suggest this photo-crosslinked hydrogel dressing efficiently promotes VEGF recruitment and angiogenesis in skin regeneration, indicating its potential for clinical applications in wound healing.


Assuntos
Hidrogéis , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Humanos , Camundongos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Bandagens , Movimento Celular/efeitos dos fármacos , Queimaduras/terapia , Queimaduras/patologia , Masculino , Células Endoteliais da Veia Umbilical Humana , Peptídeos/química , Peptídeos/farmacologia , Reagentes de Ligações Cruzadas/química , Indutores da Angiogênese/farmacologia , Indutores da Angiogênese/química
5.
Stem Cell Res Ther ; 15(1): 306, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285500

RESUMO

BACKGROUND: Influence on stem cells' angiogenesis and osteogenesis of NAD(P)H Quinone Dehydrogenase 1(NQO1) has been established, but its impact on dental pulp stem cells (DPSCs) is unexplored. An important strategy for the treatment of arteriosclerosis is to inhibit calcium deposition and to promote vascular repair and angiogenesis. This study investigated the function and mechanism of NQO1 on angiogenesis and osteogenesis of DPSCs, so as to provide a new ideal for the treatment of arteriosclerosis. METHODS: Co-culture of human DPSCs and human umbilical vein endothelial cells (HUVECs) was used to detect the angiogenesis ability. Alkaline phosphatase (ALP) activity, alizarin red staining (ARS), and transplantation of HA/tricalcium phosphate with DPSCs were used to detect osteogenesis. RESULTS: NQO1 suppressed in vitro tubule formation, migration, chemotaxis, and in vivo angiogenesis, as evidenced by reduced CD31 expression. It also enhanced ALP activity, ARS, DSPP expression and osteogenesis and boosted mitochondrial function in DPSCs. CoQ10, an electron transport chain activator, counteracted the effects of NQO1 knockdown on these processes. Additionally, NQO1 downregulated MAPK signaling, which was reversed by CoQ10 supplementation in DPSCs-NQO1sh. CONCLUSIONS: NQO1 inhibited angiogenesis and promoted the osteogenesis of DPSCs by suppressing MAPK signaling pathways and enhancing mitochondrial respiration.


Assuntos
Polpa Dentária , Células Endoteliais da Veia Umbilical Humana , Sistema de Sinalização das MAP Quinases , NAD(P)H Desidrogenase (Quinona) , Neovascularização Fisiológica , Osteogênese , Humanos , Osteogênese/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Neovascularização Fisiológica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Técnicas de Cocultura , Células-Tronco/metabolismo , Células-Tronco/citologia , Células Cultivadas , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Animais , Diferenciação Celular , Angiogênese
6.
Biomater Adv ; 165: 214010, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39222592

RESUMO

The application of biomaterials in bone regeneration is a prevalent clinical practice. However, its efficacy in elderly patients remains suboptimal, necessitating further advancements. While biomaterial properties are known to orchestrate macrophage (MΦ) polarization and local immune responses, the role of biomaterial cues, specifically stiffness, in directing the senescent macrophage (S-MΦ) is still poorly understood. This study aimed to elucidate the role of substrate stiffness in modulating the immunomodulatory properties of S-MΦ and their role in osteo-immunomodulation. Our results demonstrated that employing collagen-coated polyacrylamide hydrogels with varying stiffness values (18, 76, and 295 kPa) as model materials, the high-stiffness hydrogel (295 kPa) steered S-MΦs towards a pro-inflammatory M1 phenotype, while hydrogels with lower stiffness (18 and 76 kPa) promoted an anti-inflammatory M2 phenotype. The immune microenvironment created by S-MΦs promoted the bioactivities of senescent endothelial cells (S-ECs) and senescent bone marrow mesenchymal stem cells BMSCs (S-BMSCs). Furthermore, the M2 S-MΦs, particularly incubated on the 76 kPa hydrogel matrices, significantly enhanced the ability of angiogenesis of S-ECs and osteogenic differentiation of S-BMSCs, which are crucial and interrelated processes in bone healing. This modulation aided in reducing the accumulation of reactive oxygen species in S-ECs and S-BMSCs, thereby significantly contributing to the repair and regeneration of aged bone tissue.


Assuntos
Regeneração Óssea , Hidrogéis , Imunomodulação , Macrófagos , Células-Tronco Mesenquimais , Osteogênese , Regeneração Óssea/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Hidrogéis/química , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Animais , Senescência Celular/efeitos dos fármacos , Humanos , Diferenciação Celular , Neovascularização Fisiológica/efeitos dos fármacos , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Materiais Biocompatíveis/farmacologia , Propriedades de Superfície , Colágeno/metabolismo
7.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273259

RESUMO

Wound healing is a dynamic process involving a complex interaction between many cells and mediators. Magnesium (Mg) is an essential element for cell stabilization. Mg was reported to stimulate the proliferation and migration of endothelial cells in angiogenesis in vitro. However, the function of Mg in wound healing is not known. We observed that the expression level of Mg in human wound tissue fluid was only 10% of that found in human blood serum. To confirm whether Mg is a suitable wound dressing material, we fabricated a Mg- or Mg-silver (Ag)-based polyethylene dressing to study its effect on wound healing. We observed that Mg and Ag were stably preserved in the constructed material and were able to be rapidly released in the moist environment. We also observed that the Mg-based dressing had good cellular compatibility without harmful extractables. Furthermore, Mg enhanced the antibacterial activity of Ag. In line with the observed increase in fibroblast migration in vitro, the Mg-Ag-based dressing improved acute and chronic wound repairs via an increase in neovascularization and basal cell proliferation. The present results show that a Mg-Ag-based coating can be manufactured as an optimal dressing for adjuvant wound therapy.


Assuntos
Bandagens , Magnésio , Prata , Cicatrização , Cicatrização/efeitos dos fármacos , Magnésio/farmacologia , Prata/química , Prata/farmacologia , Humanos , Animais , Proliferação de Células/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/lesões , Movimento Celular/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Masculino , Antibacterianos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos
8.
Cell Death Dis ; 15(9): 650, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231943

RESUMO

Acid sphingomyelinase (ASM) inhibitors are widely used for the treatment of post-stroke depression. They promote neurological recovery in animal stroke models via neurorestorative effects. In a previous study, we found that antidepressants including amitriptyline, fluoxetine, and desipramine increase cerebral angiogenesis post-ischemia/reperfusion (I/R) in an ASM-dependent way. To elucidate the underlying mechanisms, we investigated the effects of the functional ASM inhibitor amitriptyline in two models of I/R injury, that is, in human cerebral microvascular endothelial hCMEC/D3 cells exposed to oxygen-glucose deprivation and in mice exposed to middle cerebral artery occlusion (MCAO). In addition to our earlier studies, we now show that amitriptyline increased mitochondrial reactive oxygen species (ROS) formation in hCMEC/D3 cells and increased ROS formation in the vascular compartment of MCAO mice. ROS formation was instrumental for amitriptyline's angiogenic effects. ROS formation did not result in excessive endothelial injury. Instead, amitriptyline induced a profound metabolic reprogramming of endothelial cells that comprised reduced endothelial proliferation, reduced mitochondrial energy metabolism, reduced endoplasmic reticulum stress, increased autophagy/mitophagy, stimulation of antioxidant responses and inhibition of apoptotic cell death. Specifically, the antioxidant heme oxygenase-1, which was upregulated by amitriptyline, mediated amitriptyline's angiogenic effects. Thus, heme oxygenase-1 knockdown severely compromised angiogenesis and abolished amitriptyline's angiogenic responses. Our data demonstrate that ASM inhibition reregulates a complex network of metabolic and mitochondrial responses post-I/R that contribute to cerebral angiogenesis without compromising endothelial survival.


Assuntos
Amitriptilina , Células Endoteliais , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Esfingomielina Fosfodiesterase , Animais , Esfingomielina Fosfodiesterase/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Espécies Reativas de Oxigênio/metabolismo , Amitriptilina/farmacologia , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Linhagem Celular , Angiogênese
9.
J Cell Mol Med ; 28(17): e70040, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39219020

RESUMO

Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three-dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super-paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co-culture of Human umbilical vein endothelial cells (HUVEC) and MG-63 cells as a model of bone microtissue. HUVECs: MG-63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 µg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis-related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen-I, as well as the expression of the angiogenesis-related marker, CD-31, and the tube formation, is significantly elevated when the 50 µg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co-culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior-performance implants, preventing device failure.


Assuntos
Regeneração Óssea , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana , Osteogênese , Engenharia Tecidual , Humanos , Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Engenharia Tecidual/métodos , Nanopartículas de Magnetita/química , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/química , Sobrevivência Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia
10.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275128

RESUMO

PURPOSE: Chronic wounds that are difficult to heal pose a major challenge for clinicians and researchers. Currently, common treatment methods focus on isolating the wound from the outside world, relying on the tissue at the wound site to grow and heal unaided. Umbilical cord mesenchymal stem cell (MSC) exosomes can promote wound healing by enhancing new blood vessel growth at the wound site. Valproic acid (VPA) reduces the inflammatory response and acts on macrophages to accelerate wound closure. In this study, VPA was loaded into umbilical cord MSC exosomes to form a drug carrier exosome (VPA-EXO) with the aim of investigating the effect of VPA-EXO on wound healing. METHODS: This study first isolated and obtained umbilical cord MSC exosomes, then added VPA to the exosomes and explored the ability of VPA-EXO to promote the proliferation and migration of human skin fibroblasts (HSFs) and human umbilical vein endothelial cells (HUVECs), as well as the ability to promote the angiogenesis of HUVECs, by using scratch, Transwell, and angiogenesis assays. An in vitro cell model was established and treated with VPA-EXO, and the expression levels of inflammation and pro-angiogenesis-related proteins and genes were examined using Western blot and qRT-PCR. The therapeutic effect of VPA-EXO on promoting wound healing in a whole skin wound model was investigated using image analysis of the wound site, H&E staining, and immunohistochemical staining experiments in a mouse wound model. RESULTS: The in vitro model showed that VPA-EXO effectively promoted the proliferation and migration of human skin fibroblast cells and human umbilical vein endothelial cells; significantly inhibited the expression of MMP-9, IL-1ß, IL-8, TNF-α, and PG-E2; and promoted the expression of vascular endothelial growth factors. In the mouse wound model, VPA-EXO reduced inflammation at the wound site, accelerated wound healing, and significantly increased the collagen content of tissue at the wound site. CONCLUSIONS: As a complex with dual efficacy in simultaneously promoting tissue regeneration and inhibiting inflammation, VPA-EXO has potential applications in tissue wound healing and vascular regeneration. In future studies, we will further investigate the mechanism of action and application scenarios of drug-loaded exosome complexes in different types of wound healing and vascular regeneration.


Assuntos
Exossomos , Células Endoteliais da Veia Umbilical Humana , Inflamação , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Ácido Valproico , Cicatrização , Ácido Valproico/farmacologia , Cicatrização/efeitos dos fármacos , Exossomos/metabolismo , Humanos , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Angiogênese
11.
Discov Med ; 36(188): 1831-1839, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39327246

RESUMO

BACKGROUND: The feeble plasticity of spinal cord microvascular endothelial cells (SCMECs) after trauma is one of the major causes of spinal cord injury (SCI). Neural stem cells (NSCs) play an important role in nerve repair. Glycoprotein nonmetastatic B (GPNMB) has neuroprotective effects and can be stimulated by endothelin 1 (ET-1), and its expression is upregulated in SCI. Here, we aim to investigate whether elevated ET-1 levels stimulate NSCs to secrete GPNMB, thereby further promoting angiogenesis. METHODS: Mouse SCMECs and NSCs were isolated, cultured, and identified by flow cytometry and immunofluorescence staining. NSCs were treated with ET-1, while SCMECs were cocultured with NSCs, followed by treatment with ET-1. NCS and SCMEC viability were evaluated using cell counting kit 8 (CCK-8) assay, while cell proliferation, migration, invasion, and angiogenesis were examined using 5'-Ethynyl-2'-Deoxyuridine (EdU) staining, wound healing assay, Transwell assay, and tube formation assay. GPNMB expression in NCSs and SCMECs was quantified by western blot assay, quantitative Real-Time polymerase chain reaction (qRT-PCR), or enzyme-linked immunosorbent assay (ELISA). RESULTS: Mouse SCMECs and NSCs were successfully isolated and cultured. ET-1 promoted NSC viability and proliferation and upregulated GPNMB expression. NSCs and ET-1-treated NSCs promoted the viability, migration, invasion, angiogenesis, and GPNMB expression in SCMECs compared with control group cells, while GPNMB antibody reversed the above effects of ET-1 on the SCMECs. CONCLUSION: ET-1 promotes SCMEC migration and invasion, along with angiogenesis, by enhancing NSC-mediated GPNMB secretion, so ET-1 may be a novel therapeutic target for SCI.


Assuntos
Endotelina-1 , Glicoproteínas de Membrana , Neovascularização Fisiológica , Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Endotelina-1/metabolismo , Camundongos , Glicoproteínas de Membrana/metabolismo , Células-Tronco Neurais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Angiogênese , Proteínas do Olho
12.
Eur J Pharm Biopharm ; 203: 114448, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39134098

RESUMO

Diabetic ulcers present a formidable obstacle in diabetes management, typically leading to high mortality and amputation rates. To overcome traditional monotherapy drawbacks, We developed a novel microneedle strategy for combined antimicrobial action: ingeniously integrating quercetin with Platelet-derived Growth Factor-BB(PDGF-BB) and Sucrose Octasulfate(SOS) into the microneedle system(QPS MN). This method allows to penetrate through biofilms, administering quercetin nanocrystals and PDGF-BB deep into the tissue to combat microbial infection, mitigate inflammation, and promote angiogenesis. The accompanying backing material contains SOS, which absorbs wound exudate and forms a dressing that provides a moist environment for wound healing In an in vitro wound-scratch assay demonstrated that co-cultivating Human Umbilical Vein Endothelial Cells(HUVEC) with QPS MN for 48 h (90.3 ± 2.51 %) significantly enhanced cell migration compared to the control group (20.2 ± 1.41 %). Moreover, treatment of streptozotocin-induced diabetic wounds in rats with QPS MN for 14 days resulted in a wound healing rate of 96.56 ± 3.44 %, far surpassing the healing rate of only 40.34 ± 7.26 % observed in the untreated control group. Furthermore, the QPS MN treated wounds exhibited a notable increase in skin appendages and neovascularisation, indicating promising potential for achieving complete wound healing. These results suggest that QPS MN may offer substantial therapeutic benefits for addressing diabetic wounds.


Assuntos
Anti-Inflamatórios , Diabetes Mellitus Experimental , Células Endoteliais da Veia Umbilical Humana , Agulhas , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Humanos , Ratos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Becaplermina/administração & dosagem , Becaplermina/farmacologia , Quercetina/administração & dosagem , Quercetina/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/administração & dosagem , Neovascularização Fisiológica/efeitos dos fármacos , Nanopartículas/química , Indutores da Angiogênese/administração & dosagem , Indutores da Angiogênese/farmacologia , Ratos Sprague-Dawley , Movimento Celular/efeitos dos fármacos
13.
J Control Release ; 374: 154-170, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127448

RESUMO

To realize high-quality vascularized bone regeneration, we developed a multifunctional hydrogel (SHPP-ZB) by incorporating BMP-2@ZIF-8/PEG-NH2 nanoparticles (NPs) into a sodium alginate/hydroxyapatite/polyvinyl alcohol hydrogel loaded with PDGF-BB, allowing for the sequential release of angiogenic and osteogenic growth factors (GFs) during bone repair. ZIF-8 served as a protective host for BMP-2 from degradation, ensuring high encapsulation efficiency and long-term bioactivity. The SHPP-ZB hydrogel exhibited enhanced mechanical strength and injectability, making it suitable for complex bone defects. It provided a swelling interface for tissue interlocking and the early release of Zn2+ and tannin acid (TA) to exert antioxidant and antibacterial effects, followed by the sequential release of angiogenic and osteogenic GFs to promote high-quality vascularized bone regeneration. In vitro experiments demonstrated the superior angiogenic and osteogenic properties of SHPP-ZB compared to other groups. In vivo experiments indicated that the sequential delivery of GFs via SHPP-ZB hydrogel could improve vascularized bone regeneration. Further, RNA sequencing analysis of regenerative bone tissue revealed that SHPP-ZB hydrogel promoted vascularized bone regeneration by regulating JUN, MAPK, Wnt, and calcium signaling pathways in vivo. This study presented a promising approach for efficient vascularized bone regeneration in large-scale bone defects.


Assuntos
Alginatos , Becaplermina , Proteína Morfogenética Óssea 2 , Regeneração Óssea , Hidrogéis , Osteogênese , Regeneração Óssea/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/administração & dosagem , Osteogênese/efeitos dos fármacos , Proteína Morfogenética Óssea 2/administração & dosagem , Alginatos/química , Becaplermina/administração & dosagem , Nanopartículas/química , Durapatita/química , Durapatita/administração & dosagem , Indutores da Angiogênese/administração & dosagem , Indutores da Angiogênese/farmacologia , Indutores da Angiogênese/química , Masculino , Álcool de Polivinil/química , Polietilenoglicóis/química , Taninos/química , Taninos/administração & dosagem , Taninos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Humanos , Ratos Sprague-Dawley , Camundongos
14.
Nat Cardiovasc Res ; 3(2): 186-202, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-39196188

RESUMO

Tissue repair after myocardial infarction (MI) is guided by autocrine and paracrine-acting proteins. Deciphering these signals and their upstream triggers is essential when considering infarct healing as a therapeutic target. Here we perform a bioinformatic secretome analysis in mouse cardiac endothelial cells and identify cysteine-rich with EGF-like domains 2 (CRELD2), an endoplasmic reticulum stress-inducible protein with poorly characterized function. CRELD2 was abundantly expressed and secreted in the heart after MI in mice and patients. Creld2-deficient mice and wild-type mice treated with a CRELD2-neutralizing antibody showed impaired de novo microvessel formation in the infarct border zone and developed severe postinfarction heart failure. CRELD2 protein therapy, conversely, improved heart function after MI. Exposing human coronary artery endothelial cells to recombinant CRELD2 induced angiogenesis, associated with a distinct phosphoproteome signature. These findings identify CRELD2 as an angiogenic growth factor and unravel a link between endoplasmic reticulum stress and ischemic tissue repair.


Assuntos
Estresse do Retículo Endoplasmático , Células Endoteliais , Infarto do Miocárdio , Neovascularização Fisiológica , Animais , Humanos , Masculino , Camundongos , Indutores da Angiogênese/farmacologia , Indutores da Angiogênese/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
Eur J Pharmacol ; 982: 176953, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39216743

RESUMO

Chronic-healing skin wounds are a common complication in diabetic individuals. To alleviate patient suffering, there is a pressing demand for more effective strategies to expedite the repair of diabetic wounds. Fibroblast growth factor 21(FGF21) has been proven to accelerate wound healing, but its stability and ability to assist in the healing of diabetic ulcers have not met expectations. Therefore, we have fused FGF21 with an elastin-like peptide (ELP) to create a recombinant fusion protein (abbreviated as "ELF") to increase the bioactivity and stability in vitro or in vivo. Our results demonstrated that ELF significantly improved the efficiency of FGF21 purification due to the inverse temperature responsive phase transition property of ELP. Meanwhile, the fusion strategy did not impair the structure of FGF21 or diminish its activity, as demonstrated by the highly similar secondary structure of ELF and FGF21, and their considerable inhibitory activity in the glucose consumption experiment of Huh-7 cells. An in vitro migration assay revealed that ELF promoted healing more effectively than either free FGF21 or ELP. Further in vivo study revealed the ability of ELF to improve skin wound healing quality, manifested by lower levels of inflammatory factors, more collagen formation and deposition, and the formation of robust vascular networks, though there was no significant difference in healing rate among the ELF, FGF21, and ELP groups. In conclusion, our study indicated that FGF21 and ELP fusion molecules could be developed as more efficient and cost-effective therapeutic strategies for diabetic wound healing.


Assuntos
Colágeno , Diabetes Mellitus Experimental , Elastina , Fatores de Crescimento de Fibroblastos , Proteínas Recombinantes de Fusão , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Elastina/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Fatores de Crescimento de Fibroblastos/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Camundongos , Colágeno/metabolismo , Colágeno/biossíntese , Masculino , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL
16.
ACS Appl Mater Interfaces ; 16(35): 46159-46166, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39168161

RESUMO

Hydrogel is widely used for the sustained delivery of bioactive molecules that can treat various injuries, diseases, and tissue defects. However, inserting hydrogel implants without disrupting their functionality and microstructure often requires a large incision, leading to potential complications, such as infection, scarring, and pain. The gel implant is often manually rolled and inserted through a catheter for a minimally invasive delivery. However, success heavily depends on the user's skills, which can inadvertently damage the implant. To address this issue, we developed a reconfigurable hydrogel patch that can self-fold into a small tube and unfold spontaneously after implantation through a catheter. The hydrogel path was assembled by layering a drug-releasing poly(ethylene glycol) diacrylate (PEGDA) hydrogel sheet onto a PEGDA and polyethylenimine (PEI) hydrogel sheet, which rapidly swells and degrades homogeneously at controlled rates. The dynamics of the self-folding and unfolding process could be controlled by differences in the expansion ratio and elastic modulus between the two gel layers according to a mathematical model that closely matched experimental results. The unfolding process triggered a sustained release of the protein cargo. Specifically, the reconfigurable gel loaded with angiopoietin 1 significantly enhanced neovascularization, nearly doubling the vascular density compared to the control group following implantation through a tube with 15% smaller diameter than the original shape of the gel patch. This gel biopatch will be broadly useful for the minimally invasive delivery of a wide array of therapeutic molecules, potentially enhancing therapeutic outcomes.


Assuntos
Hidrogéis , Polietilenoglicóis , Hidrogéis/química , Hidrogéis/farmacologia , Polietilenoglicóis/química , Animais , Camundongos , Sistemas de Liberação de Medicamentos , Humanos , Polietilenoimina/química , Neovascularização Fisiológica/efeitos dos fármacos
17.
ACS Appl Bio Mater ; 7(9): 6162-6174, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152909

RESUMO

Impaired wound healing in diabetic wounds is common due to infection, inflammation, less collagen synthesis, and vascularization. Diabetic wound healing in patients is still a challenge and needs an ideal wound dressing to treat and manage diabetic wounds. Herein, an efficacious wound dressing biomaterial was fabricated by cross-linking oxidized isabgol (Oisab) and chitosan (Cs) via trisodium trimetaphosphate and Schiff base bonds. l-Arginine (l-Arg) was incorporated as a bioactive substance in the Oisab + Cs scaffold to promote cell adhesion, cell proliferation, collagen synthesis, and vascularization. The fabricated scaffolds showed microporous networks in the scanning electron microscopy analysis. The scaffold also possessed excellent hemocompatibility. In vitro studies using fibroblasts (L929 and human dermal fibroblast cells) confirmed the cytocompatibility of these scaffolds. The results of the in vivo chicken chorioallantoic membrane assay confirmed the proangiogenic activity of the Oisab + Cs + l-Arg scaffolds. The wound-healing potential of these scaffolds was studied in streptozotocin-induced diabetic rats. This in vivo study showed that the period of epithelialization in the Oisab + Cs + l-Arg scaffold-treated wounds was 21.67 ± 1.6 days, which was significantly faster than the control (30.33 ± 2.5 days). Histological and immunohistochemical studies showed that the Oisab + Cs + l-Arg scaffolds significantly accelerated the rate of wound contraction by reducing inflammation, improving collagen synthesis, and promoting neovascularization. These findings suggest that the Oisab + Cs + l-Arg scaffolds could be beneficial in treating diabetic wounds in clinical applications.


Assuntos
Arginina , Quitosana , Colágeno , Diabetes Mellitus Experimental , Teste de Materiais , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Colágeno/química , Arginina/química , Arginina/farmacologia , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Humanos , Masculino , Tamanho da Partícula , Neovascularização Fisiológica/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/síntese química , Camundongos , Ratos Sprague-Dawley , Oxirredução
18.
J Mater Chem B ; 12(38): 9656-9674, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39175374

RESUMO

The repair of critical bone defects caused by various clinical conditions needs to be addressed urgently, and the regeneration of large bone defects depends on early vascularization. Therefore, enhanced vascularization of artificial bone grafts may be a promising strategy for the regeneration of critical-sized bone defects. Taking into account the importance of rapid angiogenesis during bone repair and the potential of piezoelectric stimulation in promoting bone regeneration, novel coaxial electrospun mats coupled with piezoelectric materials and angiogenic drugs were fabricated in this study using coaxial electrospinning technology, with a shell layer loaded with atorvastatin (AVT) and a core layer loaded with zinc oxide (ZnO). AVT was used as an angiogenesis inducer, and piezoelectric stimulation generated by the zinc oxide was used as an osteogenesis enhancer. The multifunctional mats were characterized in terms of morphology, core-shell structure, piezoelectric properties, drug release, and mechanical properties, and their osteogenic and angiogenic capabilities were validated in vivo and ex vivo. The results revealed that the coaxial electrospun mats exhibit a porous surface morphology and nanofibers with a core-shell structure, and the piezoelectricity of the mats improved with increasing ZnO content. Excellent biocompatibility, hydrophilicity and cell adhesion were observed in the multifunctional mats. Early and rapid release of AVT in the fibrous shell layer of the mat promoted angiogenesis in human umbilical vascular endothelial cells (HUVECs), whereas ZnO in the fibrous core layer harvested bioenergy and converted it into electrical energy to enhance osteogenic differentiation of rat bone mesenchymal stem cells (BMSCs), and both modalities synergistically promoted osteogenesis and angiogenesis. Furthermore, optimal bone regeneration was achieved in a model of critical bone defects in the rat mandible. This osteogenesis-promoting effect was induced by electrical stimulation via activation of the calcium signaling pathway. This multifunctional mat coupling piezoelectric stimulation and atorvastatin promotes angiogenesis and bone regeneration, and shows great potential in the treatment of large bone defects.


Assuntos
Atorvastatina , Regeneração Óssea , Osteogênese , Regeneração Óssea/efeitos dos fármacos , Atorvastatina/farmacologia , Atorvastatina/química , Animais , Ratos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Humanos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Masculino , Liberação Controlada de Fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
19.
J Mater Chem B ; 12(38): 9575-9591, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39210776

RESUMO

In this study, we have developed unique bioresorbable lithiated nanoparticles (LiCP, d50 = 20 nm), demonstrating a versatile material for bone repair and regeneration applications. The LiCPs are biocompatible even at the highest concentration tested (1000 µg mL-1) where bone marrow derived mesenchymal stem cells (BM-MSCs) maintained over 90% viability compared to the control. Notably, LiCP significantly enhanced the expression of osteogenic and angiogenic markers in vitro; collagen I, Runx2, angiogenin, and EGF increased by 8-fold, 8-fold, 9-fold, and 7.5-fold, respectively. Additionally, LiCP facilitated a marked improvement in tubulogenesis in endothelial cells across all tested concentrations. Remarkably, in an ectopic mouse model, LiCP induced mature bone formation, outperforming both the control group and non-lithiated nanoparticles. These findings establish lithiated nanoparticles as a highly promising material for advancing bone repair and regeneration therapies, offering dual benefits in osteogenesis and angiogenesis. The results lay the groundwork for future studies and potential clinical applications, where precise modulation of lithium release could tailor therapeutic outcomes to meet specific patient needs in bone and vascular tissue engineering.


Assuntos
Lítio , Nanopartículas , Neovascularização Fisiológica , Osteogênese , Osteogênese/efeitos dos fármacos , Animais , Lítio/química , Lítio/farmacologia , Nanopartículas/química , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Células Cultivadas
20.
Biomed Environ Sci ; 37(7): 739-753, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39198238

RESUMO

Objective: A high sodium (HS) diet is believed to affect bone metabolism processes. Clarifying its impact on osseointegration of titanium (Ti) implants holds significant implications for postoperative dietary management of implanted patients. Methods: This investigation probed the impact of sodium ions (Na +) on neovascularization and osteogenesis around Ti implants in vivo, utilizing micro-computed tomography, hematoxylin and eosin staining, and immunohistochemical analyses. Concurrently, in vitro experiments assessed the effects of varied Na + concentrations and exposure durations on human umbilical vein endothelial cells (HUVECs) and MC3T3-E1 cells. Results: In vivo, increased dietary sodium (0.8%-6.0%) led to a substantial decline in CD34 positive HUVECs and new bone formation around Ti implants, alongside an increase in inflammatory cells. In vitro, an increase in Na + concentration (140-150 mmol/L) adversely affected the proliferation, angiogenesis, and migration of HUVECs, especially with prolonged exposure. While MC3T3-E1 cells initially exhibited less susceptibility to high Na + concentrations compared to HUVECs during short-term exposure, prolonged exposure to a HS environment progressively diminished their proliferation, differentiation, and osteogenic capabilities. Conclusion: These findings suggest that HS diet had a negative effect on the early osseointegration of Ti implants by interfering with the process of postoperative vascularized bone regeneration.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Osseointegração , Titânio , Animais , Osseointegração/efeitos dos fármacos , Humanos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Masculino , Sódio/metabolismo , Osteogênese/efeitos dos fármacos , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA