Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 128(6): 1802-1813, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31975455

RESUMO

AIMS: The importance of bacterioferritin in the virulence and pathogenicity of the genus Mycobacterium is still unclear. The aim of this study was to analyse if the expression of a recombinant bacterioferritin from M. tuberculosis (Mtb) by Mycma could improve the capacity of this bacillus to resist the host defence mechanisms. METHODS AND RESULTS: Recombinant Mycma, expressing bacterioferritin (Rv1876) from Mtb, was developed by transformation with pMIP12_Rv1876. To determine bacterioferritin influence on Mycma physiology and virulence, the mycobacteria growth was analysed in vitro and in vivo. It was observed that the expression of bacterioferritin improved the growth rate of recombinant Mycma_BfrA under iron excess and oxidative stress, as compared to the wild type. Furthermore, in the murine model of infection, it was observed that Mycma_BfrA-infected mice had higher bacillary load and a more pronounced lesion in the lungs when compared with the wild type. CONCLUSION: This study showed that bacterioferritin confers additional resistance to stress conditions, resulting in increased pathogenicity of Mycma during mice infection. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides new insights about the importance of bacterioferritin in the virulence and pathogenicity of the Mycobacterium genus.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Ferritinas/metabolismo , Mycobacterium abscessus/fisiologia , Mycobacterium abscessus/patogenicidade , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Grupo dos Citocromos b/genética , Ferritinas/genética , Camundongos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/patologia , Mycobacterium abscessus/genética , Mycobacterium abscessus/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estresse Fisiológico , Virulência
2.
BMC Microbiol ; 17(1): 195, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28903728

RESUMO

BACKGROUND: Outbreaks of infections caused by rapidly growing mycobacteria have been reported worldwide generally associated with medical procedures. Mycobacterium abscessus subsp. massiliense CRM0019 was obtained during an epidemic of postsurgical infections and was characterized by increased persistence in vivo. To better understand the successful survival strategies of this microorganism, we evaluated its infectivity and proliferation in macrophages (RAW and BMDM) and alveolar epithelial cells (A549). For that, we assessed the following parameters, for both M. abscessus CRM0019 as well as the reference strain M. abscessus ATCC 19977: internalization, intracellular survival for up 3 days, competence to subvert lysosome fusion and the intracellular survival after cell reinfection. RESULTS: CRM0019 and ATCC 19977 strains showed the same internalization rate (approximately 30% after 6 h infection), in both A549 and RAW cells. However, colony forming units data showed that CRM0019 survived better in A549 cells than the ATCC 19977 strain. Phagosomal characteristics of CRM0019 showed the bacteria inside tight phagosomes in A549 cells, contrasting to the loosely phagosomal membrane in macrophages. This observation holds for the ATCC 19977 strain in both cell types. The competence to subvert lysosome fusion was assessed by acidification and acquisition of lysosomal protein. For M. abscessus strains the phagosomes were acidified in all cell lines; nevertheless, the acquisition of lysosomal protein was reduced by CRM0019 compared to the ATCC 19977 strain, in A549 cells. Conversely, in macrophages, both M. abscessus strains were located in mature phagosomes, however without bacterial death. Once recovered from macrophages M. abscessus could establish a new intracellular infection. Nevertheless, only CRM0019 showed a higher growth rate in A549, increasing nearly 10-fold after 48 and 72 h. CONCLUSION: M. abscessus CRM0019 creates a protective and replicative niche in alveolar epithelial cells mainly by avoiding phagosome maturation. Once recovered from infected macrophages, CRM0019 remains infective and displays greater intracellular growth in A549 cells compared to the ATCC 19977 strain. This evasion strategy in alveolar epithelial cells may contribute to the long survival of the CRM0019 strain in the host and thus to the inefficacy of in vivo treatment.


Assuntos
Células Epiteliais Alveolares/microbiologia , Proliferação de Células , Interações Hospedeiro-Patógeno/fisiologia , Viabilidade Microbiana , Mycobacterium abscessus/fisiologia , Mycobacterium abscessus/patogenicidade , Células A549 , Animais , Contagem de Colônia Microbiana , Humanos , Evasão da Resposta Imune , Lisossomos/metabolismo , Macrófagos/microbiologia , Camundongos , Fagossomos/microbiologia , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA