Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 119: e230186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045993

RESUMO

BACKGROUND: Giant viruses have brought new insights into different aspects of virus-cell interactions. The resulting cytopathic effects from these interactions are one of the main aspects of infection assessment in a laboratory routine, mainly reflecting on the morphological features of an infected cell. OBJECTIVES: In this work, we follow the entire kinetics of the cytopathic effect in cells infected by viruses of the Mimiviridae family, spatiotemporally quantifying typical features such as cell roundness, loss of motility, decrease in cell area and cell lysis. METHODS: Infections by Acanthamoeba polyphaga mimivirus (APMV), Tupanvirus (TPV) and M4 were carried out at multiplicity of infection (MOI) 1 and MOI 10 in Acanthamoeba castellanii. Monitoring of infections was carried out using time lapse microscopy for up to 72 hours. The images were analyzed using ImageJ software. FINDINGS: The data obtained indicate that APMV is the slowest virus in inducing the cytopathic effects of rounding, decrease in cell area, mobility and cell lysis. However, it is the only virus whose MOI increase accelerates the lysis process of infected cells. In turn, TPV and M4 rapidly induce morphological and behavioral changes. MAIN CONCLUSIONS: Our results indicate that mimiviruses induce different temporal responses within the host cell and that it is possible to use these kinetic data to facilitate the understanding of infection by these viruses.


Assuntos
Acanthamoeba castellanii , Efeito Citopatogênico Viral , Mimiviridae , Mimiviridae/fisiologia , Cinética , Acanthamoeba castellanii/virologia
2.
Exp Biol Med (Maywood) ; 248(22): 2045-2052, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37955170

RESUMO

The capsid has a central role in viruses' life cycle. Although one of its major functions is to protect the viral genome, the capsid may be composed of elements that, at some point, promote interaction with host cells and trigger infection. Considering the scenario of multiple origins of viruses along the viral evolution, a substantial number of capsid shapes, sizes, and symmetries have been described. In this context, capsids of giant viruses (GV) that infect protists have drawn the attention of the scientific community, especially in the last 20 years, specifically for having bacterial-like dimensions with hundreds of different proteins and exclusive features. For instance, the surface fibrils present on the mimivirus capsid are one of the most intriguing features of the known virosphere. They are 150-nm-long structures attached to a 450-nm capsid, resulting in a particle with a hairy appearance. Surface fibrils have also been described in the capsids of other nucleocytoviruses, although they may differ substantially among them. In this mini review for non-experts, we compile the most important available information on surface fibrils of nucleocytoviruses, discussing their putative functions, composition, length, organization, and origins.


Assuntos
Vírus Gigantes , Mimiviridae , Vírus , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Vírus Gigantes/genética , Mimiviridae/genética
3.
J Virol ; 97(2): e0182422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728417

RESUMO

Among the most intriguing structural features in the known virosphere are mimivirus surface fibrils, proteinaceous filaments approximately 150 nm long, covering the mimivirus capsid surface. Fibrils are important to promote particle adhesion to host cells, triggering phagocytosis and cell infection. However, although mimiviruses are one of the most abundant viral entities in a plethora of biomes worldwide, there has been no comparative analysis on fibril organization and abundance among distinct mimivirus isolates. Here, we describe the isolation and characterization of Megavirus caiporensis, a novel lineage C mimivirus with surface fibrils organized as "clumps." This intriguing feature led us to expand our analyses to other mimivirus isolates. By employing a combined approach including electron microscopy, image processing, genomic sequencing, and viral prospection, we obtained evidence of at least three main patterns of surface fibrils that can be found in mimiviruses: (i) isolates containing particles with abundant fibrils, distributed homogeneously on the capsid surface; (ii) isolates with particles almost fibrilless; and (iii) isolates with particles containing fibrils in abundance, but organized as clumps, as observed in Megavirus caiporensis. A total of 15 mimivirus isolates were analyzed by microscopy, and their DNA polymerase subunit B genes were sequenced for phylogenetic analysis. We observed a unique match between evolutionarily-related viruses and their fibril profiles. Biological assays suggested that patterns of fibrils can influence viral entry in host cells. Our data contribute to the knowledge of mimivirus fibril organization and abundance, as well as raising questions on the evolution of those intriguing structures. IMPORTANCE Mimivirus fibrils are intriguing structures that have drawn attention since their discovery. Although still under investigation, the function of fibrils may be related to host cell adhesion. In this work, we isolated and characterized a new mimivirus, called Megavirus caiporensis, and we showed that mimivirus isolates can exhibit at least three different patterns related to fibril organization and abundance. In our study, evolutionarily-related viruses presented similar fibril profiles, and such fibrils may affect how those viruses trigger phagocytosis in amoebas. These data shed light on aspects of mimivirus particle morphology, virus-host interactions, and their evolution.


Assuntos
Mimiviridae , Proteínas do Capsídeo/genética , Genoma Viral , Microscopia Eletrônica , Mimiviridae/genética , Mimiviridae/ultraestrutura , Filogenia
4.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215800

RESUMO

Mimiviruses are giant viruses of amoeba that can be found in association with virophages. These satellite-like viruses are dependent on the mimivirus viral factory to replicate. Mimiviruses can also be associated with linear DNA molecules called transpovirons. Transpovirons and virophages are important drivers of giant virus evolution although they are still poorly studied elements. Here, we describe the isolation and genomic characterization of a mimivirus/virophage/transpoviron tripartite system from Brazil. We analyzed transmission electron microscopy images and performed genome sequencing and assembly, gene annotation, and phylogenetic analysis. Our data confirm the isolation of a lineage A mimivirus (1.2 Mb/1012 ORFs), called mimivirus argentum, and a sputnik virophage (18,880 bp/20 ORFs). We also detected a third sequence corresponding to a transpoviron from clade A (6365 bp/6 ORFs) that presents small terminal inverted repeats (77 nt). The main genomic features of mimivirus argentum and of its virophage/transpoviron elements corroborates with what is described for other known elements. This highlights that this triple genomic and biological interaction may be ancient and well-conserved. The results expand the basic knowledge about unique and little-known elements and pave the way to future studies that might contribute to a better understanding of this tripartite relationship.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Vírus Gigantes/genética , Mimiviridae/genética , Virófagos/genética , Brasil , Genoma Viral , Genômica , Vírus Gigantes/classificação , Mimiviridae/classificação , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética , Virófagos/classificação
5.
Arch Virol ; 165(6): 1267-1278, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32333117

RESUMO

Giant viruses of amoebas are a remarkable group of viruses. In addition to their large size and peculiar structures, the genetic content of these viruses is also special. Among the genetic features of these viruses that stand out is the presence of coding regions for elements involved in translation, a complex biological process that occurs in cellular organisms. No viral genome described so far has such a complex genetic arsenal as those of giant viruses, which code for several of these elements. Currently, tupanviruses have the most complete set of translation genes in the known virosphere. In this review, we have condensed what is currently known about translation genes in different groups of giant viruses and theorize about their biological importance, origin, and evolution, and what might possibly be found in the coming years.


Assuntos
Vírus Gigantes/genética , Mimiviridae/genética , Amoeba/virologia , Evolução Molecular , Genoma Viral , Vírus Gigantes/patogenicidade , Especificidade de Hospedeiro/genética , Mimiviridae/metabolismo , Mimiviridae/ultraestrutura , Filogenia , Biossíntese de Proteínas , Proteoma/genética , RNA Ribossômico 16S/genética , RNA Viral/genética
6.
Arch Virol ; 165(4): 853-863, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32052196

RESUMO

Since its discovery, the first identified giant virus associated with amoebae, Acanthamoeba polyphaga mimivirus (APMV), has been rigorously studied to understand the structural and genomic complexity of this virus. In this work, we report the isolation and genomic characterization of a new mimivirus of lineage B, named "Borely moumouvirus". This new virus exhibits a structure and replicative cycle similar to those of other members of the family Mimiviridae. The genome of the new isolate is a linear double-strand DNA molecule of ~1.0 Mb, containing over 900 open reading frames. Genome annotation highlighted different translation system components encoded in the DNA of Borely moumouvirus, including aminoacyl-tRNA synthetases, translation factors, and tRNA molecules, in a distribution similar to that in other lineage B mimiviruses. Pan-genome analysis indicated an increase in the genetic arsenal of this group of viruses, showing that the family Mimiviridae is still expanding. Furthermore, phylogenetic analysis has shown that Borely moumouvirus is closely related to moumouvirus australiensis. This is the first mimivirus lineage B isolated from Brazilian territory to be characterized. Further prospecting studies are necessary for us to better understand the diversity of these viruses so a better classification system can be established.


Assuntos
Genoma Viral , Mimiviridae/isolamento & purificação , Rios/virologia , Brasil , Genômica , Mimiviridae/classificação , Mimiviridae/genética , Mimiviridae/fisiologia , Filogenia , Replicação Viral
7.
Virol J ; 16(1): 126, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684962

RESUMO

Since the discovery of mimivirus, numerous giant viruses associated with free-living amoebae have been described. The genome of giant viruses can be more than 2.5 megabases, and virus particles can exceed the size of many bacteria. The unexpected characteristics of these viruses have made them intriguing research targets and, as a result, studies focusing on their interactions with their amoeba host have gained increased attention. Studies have shown that giant viruses can establish host-pathogen interactions, which have not been previously demonstrated, including the unprecedented interaction with a new group of small viruses, called virophages, that parasitize their viral factories. In this brief review, we present recent advances in virophage-giant virus-host interactions and highlight selected studies involving interactions between giant viruses and amoebae. These unprecedented interactions involve the giant viruses mimivirus, marseillevirus, tupanviruses and faustovirus, all of which modulate the amoeba environment, affecting both their replication and their spread to new hosts.


Assuntos
Amoeba/virologia , Vírus Gigantes/fisiologia , Interações Hospedeiro-Patógeno , Amoeba/fisiologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virologia , Genoma Viral , Especificidade de Hospedeiro , Mimiviridae/fisiologia , Modelos Biológicos , Virófagos/fisiologia , Replicação Viral
8.
Adv Virus Res ; 103: 135-166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30635075

RESUMO

The discovery of giant viruses revealed a new level of complexity in the virosphere, raising important questions about the diversity, ecology, and evolution of these viruses. The family Mimiviridae was the first group of amoebal giant viruses to be discovered (by Bernard La Scola and Didier Raoult team), containing viruses with structural and genetic features that challenged many concepts of classic virology. The tupanviruses are among the newest members of this family and exhibit structural, biological, and genetic features never previously observed in other giant viruses. The complexity of these viruses has put us one step forward toward the comprehension of giant virus biology and evolution, but also has raised important questions that still need to be addressed. In this chapter, we tell the history behind the discovery of one of the most complex viruses isolated to date, highlighting the unique features exhibited by tupanviruses, and discuss how these giant viruses have contributed to redefining limits for the virosphere.


Assuntos
Especificidade de Hospedeiro , Mimiviridae/fisiologia , Biossíntese de Proteínas , Proteínas Virais/genética , Amoeba/virologia , Genoma Viral , Vírus Gigantes/fisiologia , Interações Hospedeiro-Patógeno , Mimiviridae/isolamento & purificação , Ribossomos/genética , Ribossomos/virologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
9.
J Mol Evol ; 87(1): 7-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30456441

RESUMO

The definition of a genomic signature (GS) is "the total net response to selective pressure". Recent isolation and sequencing of naturally occurring organisms, hereby named entoorganisms, within Acanthamoeba polyphaga, raised the hypothesis of a common genomic signature despite their diverse and unrelated evolutionary origin. Widely accepted and implemented tests for GS detection are oligonucleotide relative frequencies (OnRF) and relative codon usage (RCU) surveys. A common pattern and strong correlations were unveiled from OnRFs among A. polyphaga's Mimivirus and virophage Sputnik. RCU showed a common A-T bias at third codon position. We expanded tests to the amoebal mitochondrial genome and amoeba-resistant bacteria, achieving strikingly coherent results to the aforementioned viral analyses. The GSs in these entoorganisms of diverse evolutionary origin are coevolutionarily conserved within an intracellular environment that provides sanctuary for species of ecological and biomedical relevance.


Assuntos
Acanthamoeba/genética , Coevolução Biológica/genética , Mimiviridae/genética , Amoeba/genética , Animais , Bactérias/genética , Códon/genética , Evolução Molecular , Genoma Viral , Genômica , Mitocôndrias/genética , Parasitos/genética , Proteínas Virais/genética , Virófagos/genética
10.
Nat Commun ; 9(1): 749, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487281

RESUMO

Here we report the discovery of two Tupanvirus strains, the longest tailed Mimiviridae members isolated in amoebae. Their genomes are 1.44-1.51 Mb linear double-strand DNA coding for 1276-1425 predicted proteins. Tupanviruses share the same ancestors with mimivirus lineages and these giant viruses present the largest translational apparatus within the known virosphere, with up to 70 tRNA, 20 aaRS, 11 factors for all translation steps, and factors related to tRNA/mRNA maturation and ribosome protein modification. Moreover, two sequences with significant similarity to intronic regions of 18 S rRNA genes are encoded by the tupanviruses and highly expressed. In this translation-associated gene set, only the ribosome is lacking. At high multiplicity of infections, tupanvirus is also cytotoxic and causes a severe shutdown of ribosomal RNA and a progressive degradation of the nucleus in host and non-host cells. The analysis of tupanviruses constitutes a new step toward understanding the evolution of giant viruses.


Assuntos
Mimiviridae/genética , Amoeba/virologia , Brasil , Evolução Molecular , Genoma Viral , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Patógeno/genética , Lagos/microbiologia , Microscopia Eletrônica , Mimiviridae/metabolismo , Mimiviridae/ultraestrutura , Oceanos e Mares , Filogenia , Biossíntese de Proteínas , Proteoma/genética , RNA Ribossômico 16S/genética , RNA Viral/genética , Proteínas Virais/genética , Microbiologia da Água
11.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118120

RESUMO

The inclusion of Mimiviridae members in the putative monophyletic nucleocytoplasmic large DNA virus (NCLDV) group is based on genomic and phylogenomic patterns. This shows that, along with other viral families, they share a set of genes known as core or "hallmark genes," including the gene for the major capsid protein (MCP). Although previous studies have suggested that the maturation of mimivirus MCP transcripts is dependent on splicing, there is little information about the processing of this transcript in other mimivirus isolates. Here we report the characterization of a new mimivirus isolate, called Kroon virus (KV) mimivirus. Analysis of the structure, synteny, and phylogenetic relationships of the MCP genes in many mimivirus isolates revealed a remarkable variation at position and types of intronic and exonic regions, even for mimiviruses belonging to the same lineage. In addition, sequencing of KV and Acanthamoeba polyphaga mimivirus (APMV) MCP transcripts has shown that inside the family, even related giant viruses may present different ways to process the MCP mRNA. These results contribute to the understanding of the genetic organization and evolution of the MCP gene in mimiviruses.IMPORTANCE Mimivirus isolates have been obtained by prospecting studies since 2003. Based on genomic and phylogenomic studies of conserved genes, these viruses have been clustered together with members of six other viral families. Although the major capsid protein (MCP) gene is an important member of the so-called "hallmark genes," there is little information about the processing and structure of this gene in many mimivirus isolates. In this work, we have analyzed the structure, synteny, and phylogenetic relationships of the MCP genes in many mimivirus isolates; these genes showed remarkable variation at position and types of intronic and exonic regions, even for mimiviruses belonging to the same lineage. These results contribute to the understanding of the genetic organization and evolution of the MCP gene in mimiviruses.


Assuntos
Proteínas do Capsídeo/genética , Evolução Molecular , Regulação Viral da Expressão Gênica , Mimiviridae/genética , Splicing de RNA , Transcrição Gênica , Genoma Viral , Mimiviridae/classificação , Mimiviridae/isolamento & purificação , Mimiviridae/ultraestrutura , Filogenia , RNA Viral , Replicação Viral , Microbiologia da Água
12.
Genet Mol Res ; 16(3)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28973763

RESUMO

The natural history of mimiviruses (i.e., viruses that are members of the Mimivirus genus) is a challenge for modern biology. A new domain of life to include these organisms has been proposed from analysis of gene conservation. We analyzed the evolutionary relationship of proteins involved in the translation system, and our data show that mimiviruses are a sister group of Eukarya. New data about the origins of Eukarya, in which Eukarya appears as a branch derived from the Archaea domain, were discussed, and we suggest that the mimiviruses emerged from the initial population that gave origin to Eukarya and that, in this way are not part of a new domain of life.


Assuntos
Evolução Molecular , Mimiviridae/genética , Filogenia , Proteínas Virais/genética , Mimiviridae/classificação , Modelos Genéticos , Biossíntese de Proteínas/genética , Homologia de Sequência , Proteínas Virais/metabolismo
13.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878069

RESUMO

Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii, causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus.IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we conducted a new examination of the replication cycle of mimivirus and provide new evidence concerning some stages of the cycle which were previously unclear, mainly entry, uncoating, and morphogenesis. Furthermore, we demonstrate that atypical virion morphologies can occur even in the absence of virophages. Our results, along with previous data, allow us to present an ultimate model for the mimivirus replication cycle.


Assuntos
Acanthamoeba castellanii/virologia , Mimiviridae/fisiologia , Internalização do Vírus , Replicação Viral/fisiologia , Desenvelopamento do Vírus/fisiologia , Acanthamoeba castellanii/metabolismo , Fagocitose
14.
Arch Virol ; 162(10): 3205-3207, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667442

RESUMO

In recent years, giant viruses belonging to the family Mimiviridae have been proposed to be infectious agents in humans. In this work we provide evidence of mimivirus genome and neutralizing antibodies detection in humans.


Assuntos
Anticorpos Antivirais/sangue , Genoma Viral , Mimiviridae/isolamento & purificação , Brasil , Humanos , Mimiviridae/genética
15.
Viruses ; 9(2)2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216551

RESUMO

Prior to the discovery of the mimivirus in 2003, viruses were thought to be physically small and genetically simple. Mimivirus, with its ~750-nm particle size and its ~1.2-Mbp genome, shattered these notions and changed what it meant to be a virus. Since this discovery, the isolation and characterization of giant viruses has exploded. One of the more recently discovered giant viruses, Samba virus, is a Mimivirus that was isolated from the Rio Negro in the Brazilian Amazon. Initial characterization of Samba has revealed some structural information, although the preparation techniques used are prone to the generation of structural artifacts. To generate more native-like structural information for Samba, we analyzed the virus through cryo-electron microscopy, cryo-electron tomography, scanning electron microscopy, and fluorescence microscopy. These microscopy techniques demonstrated that Samba particles have a capsid diameter of ~527 nm and a fiber length of ~155 nm, making Samba the largest Mimivirus yet characterized. We also compared Samba to a fiberless mimivirus variant. Samba particles, unlike those of mimivirus, do not appear to be rigid, and quasi-icosahedral, although the two viruses share many common features, including a multi-layered capsid and an asymmetric nucleocapsid, which may be common amongst the Mimiviruses.


Assuntos
Mimiviridae/ultraestrutura , Brasil , Capsídeo/ultraestrutura , Microscopia , Mimiviridae/isolamento & purificação , Rios/virologia
16.
Curr Protoc Microbiol ; 41: 14G.1.1-14G.1.13, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27153385

RESUMO

The aim of this protocol is to describe the replication, purification, and titration of mimiviruses. These viruses belong to the Mimiviridae family, the first member of which was isolated in 1992 from a cooling tower water sample collected during an outbreak of pneumonia in a hospital in Bradford, England. In recent years, several new mimiviruses have been isolated from different environmental conditions. These giant viruses are easily replicated in amoeba of the Acanthamoeba genus, its natural host. Mimiviruses present peculiar features that make them unique viruses, such as the particle and genome size and the genome's complexity. The discovery of these viruses rekindled discussions about their origin and evolution, and the genetic and structural complexity opened up a new field of study. Here, we describe some methods utilized for mimiviruses replication, purification, and titration. © 2016 by John Wiley & Sons, Inc.


Assuntos
Centrifugação com Gradiente de Concentração/métodos , Mimiviridae/química , Mimiviridae/fisiologia , Cultura de Vírus/métodos , Replicação Viral , Acanthamoeba/virologia , Genoma Viral , Mimiviridae/genética , Mimiviridae/crescimento & desenvolvimento
17.
Curr Opin Microbiol ; 31: 88-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27039270

RESUMO

The proposed order Megavirales comprises the nucleocytoplasmic large DNA viruses (NCLDV), infecting a wide range of hosts. Over time, they co-evolved with different host cells, developing various strategies to penetrate them. Mimiviruses and other giant viruses enter cells through phagocytosis, while Marseillevirus and other large viruses explore endocytosis and macropinocytosis. These differing strategies might reflect the evolution of those viruses. Various scenarios have been proposed for the origin and evolution of these viruses, presenting one of the most enigmatic issues to surround these microorganisms. In this context, we believe that giant viruses evolved independently by massive gene/size gain, exploring the phagocytic pathway of entry into amoebas. In response to gigantism, hosts developed mechanisms to evade these parasites.


Assuntos
Acanthamoeba/virologia , Vírus Gigantes/crescimento & desenvolvimento , Vírus Gigantes/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Pinocitose/fisiologia , Internalização do Vírus , DNA Viral/genética , Evolução Molecular , Mimiviridae/metabolismo
18.
Curr Opin Microbiol ; 31: 9-15, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26820447

RESUMO

Acanthamoeba are natural hosts for giant viruses and their life cycle comprises two stages: a trophozoite and a cryptobiotic cyst. Encystment involves a massive turnover of cellular components under molecular regulation. Giant viruses are able to infect only the trophozoite, while cysts are resistant to infection. Otherwise, upon infection, mimiviruses are able to prevent encystment. This review highlights the important points of Acanthamoeba and giant virus interactions regarding the encystment process. The existence of an acanthamoebal non-permissive cell for Acanthamoeba polyphaga mimivirus, the prototype member of the Mimivirus genus, is analyzed at the molecular and ecological levels, and compared to a similar phenomenon previously described for Emiliana huxleyi and its associated phycodnaviruses: the 'Cheshire Cat' escape strategy.


Assuntos
Acanthamoeba/virologia , Vírus Gigantes/genética , Interações Hospedeiro-Patógeno/genética , Mimiviridae/genética , Encistamento de Parasitas/genética , Transdução de Sinais/genética , Trofozoítos/virologia
19.
J Virol ; 89(23): 11812-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378162

RESUMO

UNLABELLED: Acanthamoeba polyphaga mimivirus (APMV) is a giant virus from the Mimiviridae family. It has many unusual features, such as a pseudoicosahedral capsid that presents a starfish shape in one of its vertices, through which the ∼ 1.2-Mb double-stranded DNA is released. It also has a dense glycoprotein fibril layer covering the capsid that has not yet been functionally characterized. Here, we verified that although these structures are not essential for viral replication, they are truly necessary for viral adhesion to amoebae, its natural host. In the absence of fibrils, APMV had a significantly lower level of attachment to the Acanthamoeba castellanii surface. This adhesion is mediated by glycans, specifically, mannose and N-acetylglucosamine (a monomer of chitin and peptidoglycan), both of which are largely distributed in nature as structural components of several organisms. Indeed, APMV was able to attach to different organisms, such as Gram-positive bacteria, fungi, and arthropods, but not to Gram-negative bacteria. This prompted us to predict that (i) arthropods, mainly insects, might act as mimivirus dispersers and (ii) by attaching to other microorganisms, APMV could be ingested by amoebae, leading to the successful production of viral progeny. To date, this mechanism has never been described in the virosphere. IMPORTANCE: APMV is a giant virus that is both genetically and structurally complex. Its size is similar to that of small bacteria, and it replicates inside amoebae. The viral capsid is covered by a dense glycoprotein fibril layer, but its function has remained unknown, until now. We found that the fibrils are not essential for mimivirus replication but that they are truly necessary for viral adhesion to the cell surface. This interaction is mediated by glycans, mainly N-acetylglucosamine. We also verified that APMV is able to attach to bacteria, fungi, and arthropods. This indicates that insects might act as mimivirus dispersers and that adhesion to other microorganisms could facilitate viral ingestion by amoebae, a mechanism never before described in the virosphere.


Assuntos
Acanthamoeba/virologia , Glicoproteínas/metabolismo , Mimiviridae/fisiologia , Proteínas Virais/metabolismo , Ligação Viral , Acanthamoeba/fisiologia , Acanthamoeba/ultraestrutura , Acetilglucosamina/metabolismo , Análise de Variância , Manose/metabolismo , Microscopia Eletrônica de Transmissão , Especificidade da Espécie , Replicação Viral/fisiologia
20.
Viruses ; 7(7): 3483-99, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26131958

RESUMO

Since the recent discovery of Samba virus, the first representative of the family Mimiviridae from Brazil, prospecting for mimiviruses has been conducted in different environmental conditions in Brazil. Recently, we isolated using Acanthamoeba sp. three new mimiviruses, all of lineage A of amoebal mimiviruses: Kroon virus from urban lake water; Amazonia virus from the Brazilian Amazon river; and Oyster virus from farmed oysters. The aims of this work were to sequence and analyze the genome of these new Brazilian mimiviruses (mimi-BR) and update the analysis of the Samba virus genome. The genomes of Samba virus, Amazonia virus and Oyster virus were 97%-99% similar, whereas Kroon virus had a low similarity (90%-91%) with other mimi-BR. A total of 3877 proteins encoded by mimi-BR were grouped into 974 orthologous clusters. In addition, we identified three new ORFans in the Kroon virus genome. Additional work is needed to expand our knowledge of the diversity of mimiviruses from Brazil, including if and why among amoebal mimiviruses those of lineage A predominate in the Brazilian environment.


Assuntos
Água Doce/virologia , Genoma Viral , Mimiviridae/genética , Sequência de Bases , Brasil , Mimiviridae/química , Mimiviridae/classificação , Mimiviridae/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA