Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.091
Filtrar
1.
Nagoya J Med Sci ; 86(3): 392-406, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39355370

RESUMO

Traumatic spinal cord injury is characterized by immediate and irreversible tissue loss at the lesion site and secondary tissue damage. Secondary injuries should, in principle, be preventable, although no effective treatment options currently exist for patients with acute spinal cord injury. Traumatized tissues release excessive amounts of adenosine triphosphate and activate the P2X purinoceptor 7/pannexin1 complex, which is associated with secondary injury. We investigated the neuroprotective effects of the blue dye Brilliant Blue FCF, a selective inhibitor of P2X purinoceptor 7/pannexin1 that is approved for use as a food coloring, by comparing it with Brilliant Blue G, a P2X7 purinoceptor antagonist, and carbenoxolone, which attenuates P2X purinoceptor 7/pannexin1 function, in a rat spinal cord injury model. Brilliant Blue FCF administered early after spinal cord injury reduced spinal cord anatomical damage and improved motor recovery without apparent toxicity. Brilliant Blue G had the highest effect on this neurological recovery, with Brilliant Blue FCF and carbenoxolone having comparable improvement. Furthermore, Brilliant Blue FCF administration reduced local astrocytic and microglial activation and neutrophil infiltration, and no differences in these histological effects were observed between compounds. Thus, Brilliant Blue FCF protects spinal cord neurons after spinal cord injury and suppresses local inflammatory responses as well as Brilliant Blue G and carbenoxolone.


Assuntos
Trifosfato de Adenosina , Carbenoxolona , Conexinas , Proteínas do Tecido Nervoso , Recuperação de Função Fisiológica , Corantes de Rosanilina , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Animais , Conexinas/metabolismo , Conexinas/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Carbenoxolona/farmacologia , Carbenoxolona/uso terapêutico , Corantes de Rosanilina/farmacologia , Corantes de Rosanilina/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Recuperação de Função Fisiológica/efeitos dos fármacos , Ratos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Ratos Sprague-Dawley , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Feminino , Infiltração de Neutrófilos/efeitos dos fármacos
2.
J Toxicol Sci ; 49(10): 435-446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39358233

RESUMO

BACKGROUND: Neuroinflammation plays a critical role in various neurological disorders. Oxycodone has anti-inflammatory properties. The purpose of this work was to look into the effect of oxycodone in controlling lipopolysaccharide (LPS)-induced neuroinflammation in microglia. METHODS: LPS-induced HMC3 cells were subjected to oxycodone (2.5, 5, 10 and 20 µg/mL). The mRNA and protein expressions were examined by qRT-PCR and western blotting. TNF-α, IL-1ß, IL-6, and IL-8 levels were assessed by ELISA. MTT assay was adopted to measure cell viability. The interactions between CREB, miR-181c and PDCD4 were analyzed by dual-luciferase reporter assay, ChIP and/or RIP assays. RESULTS: Oxycodone treatment alleviated LPS-induced inflammation in HMC3 cells and increased p-CREB level, but reduced PDCD4 and iNOS levels in LPS-treated cells. Mechanistically, oxycodone mitigated LPS-induced neuroinflammation by upregulating miR-181c. In addition, CREB promoted miR-181c expression by directly binding to the MIR181C promoter, and miR-181c inhibited PDCD4 expression by directly binding to PDCD4 3'UTR. As expected, oxycodone alleviated LPS-induced neuroinflammation by regulating the CREB/miR-181c/PDCD4 axis. CONCLUSION: Oxycodone attenuated LPS-induced neuroinflammation in microglia by regulating the CREB/miR-181c/PDCD4 axis. These findings proved that oxycodone is a potential drug for treating neuroinflammation and elucidate the mechanisms involved.


Assuntos
Proteínas Reguladoras de Apoptose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Lipopolissacarídeos , MicroRNAs , Microglia , Doenças Neuroinflamatórias , Oxicodona , Proteínas de Ligação a RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Oxicodona/farmacologia , Oxicodona/efeitos adversos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/genética , Anti-Inflamatórios/farmacologia , Linhagem Celular , Inflamação/induzido quimicamente , Inflamação/genética , Transdução de Sinais/efeitos dos fármacos
3.
J Transl Med ; 22(1): 876, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350202

RESUMO

BACKGROUND: Tobacco smoking is the leading cause of preventable death and disease worldwide, with over 8 million annual deaths attributed to cigarette smoking. This study investigates the impact of cigarette smoke and heated tobacco products (HTPs) on microglial function, focusing on toxicological profiles, inflammatory responses, and oxidative stress using ISO standard and clinically relevant conditions of exposure. METHODS: We assessed cell viability, reactive oxygen species (ROS) production, lipid peroxidation, mitochondrial function, unfolded protein response, and inflammation in human microglial cells (HMC3) exposed to cigarette smoke, HTP aerosol or nicotine. RESULTS: Our findings show that cigarette smoke significantly reduces microglial viability, increases ROS formation, induces lipid peroxidation, and reduces intracellular glutathione levels. Cigarette smoke also alters the expression of genes involved in mitochondrial dynamics and biogenesis, leading to mitochondrial dysfunction. Additionally, cigarette smoke impairs the unfolded protein response, activates the NF-κB pathway, and induces a pro-inflammatory state characterized by increased TNF and IL-18 expression. Furthermore, cigarette smoke causes DNA damage and decreases the expression of the aging marker Klotho ß. In contrast, HTP, exhibited a lesser degree of microglial toxicity, with reduced ROS production, lipid peroxidation, and mitochondrial dysfunction compared to conventional cigarettes. CONCLUSION: These results highlight the differential toxicological profile of cigarette smoke and HTP on microglial cells, suggesting a potential harm reduction strategy for neurodegenerative disease for smokers unwilling or unable to quit.


Assuntos
Sobrevivência Celular , Inflamação , Peroxidação de Lipídeos , Microglia , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Fumaça , Produtos do Tabaco , Resposta a Proteínas não Dobradas , Estresse Oxidativo/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Inflamação/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Produtos do Tabaco/efeitos adversos , Fumaça/efeitos adversos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Linhagem Celular , Temperatura Alta , NF-kappa B/metabolismo , Nicotiana/efeitos adversos , Dano ao DNA
4.
Neuromolecular Med ; 26(1): 37, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266914

RESUMO

As the primary connection between the eye and brain, the optic nerve plays a pivotal role in visual information transmission. Injuries to the optic nerve can occur for various reasons, including trauma, glaucoma, and neurodegenerative diseases. Retinal ganglion cells (RGCs), a type of neurons that extend axons through the optic nerve, can rapidly respond to injury and initiate cell death. Additionally, following optic nerve injury microglia, which serve as markers of neuroinflammation, transition from a resting state to an activated state. The phosphorylation of collapsin response mediator protein2 (CRMP2) in the semaphorin 3A (Sema3A) signalling pathway affects several processes, including axon guidance and neuron regeneration. In this study, we used an optic nerve crush (ONC) mouse model to investigate the effects of suppressing CRMP2 phosphorylation on microglia activation. We found that CRMP2 phosphorylation inhibitor suppressed RGCs loss and promoted neuronal regeneration following ONC. In addition, CRMP2 S522A mutant (CRMP2 KI) mice exhibited decreased microglial activation in both the retina and optic nerve following ONC. These results suggest that inhibiting the phosphorylation of CRMP2 can alleviate the loss of RGCs and microglial activation after optic nerve injury, providing insight into the development of treatments for optical neuropathies and neurodegenerative diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Microglia , Regeneração Nervosa , Proteínas do Tecido Nervoso , Traumatismos do Nervo Óptico , Nervo Óptico , Retina , Células Ganglionares da Retina , Semaforina-3A , Animais , Traumatismos do Nervo Óptico/fisiopatologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/tratamento farmacológico , Microglia/metabolismo , Microglia/efeitos dos fármacos , Fosforilação , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Nervo Óptico/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Compressão Nervosa , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Camundongos Transgênicos
5.
Acta Neuropathol Commun ; 12(1): 150, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39300576

RESUMO

BACKGROUND: Glaucoma is a leading cause of blindness, affecting retinal ganglion cells (RGCs) and their axons. By 2040, it is likely to affect 110 million people. Neuroinflammation, specifically through the release of proinflammatory cytokines by M1 microglial cells, plays a crucial role in glaucoma progression. Indeed, in post-mortem human studies, pre-clinical models, and ex-vivo models, RGC degeneration has been consistently shown to be linked to inflammation in response to cell death and tissue damage. Recently, Rho kinase inhibitors (ROCKis) have emerged as potential therapies for neuroinflammatory and neurodegenerative diseases. This study aimed to investigate the potential effects of three ROCKis (Y-27632, Y-33075, and H-1152) on retinal ganglion cell (RGC) loss and retinal neuroinflammation using an ex-vivo retinal explant model. METHODS: Rat retinal explants underwent optic nerve axotomy and were treated with Y-27632, Y-33075, or H-1152. The neuroprotective effects on RGCs were evaluated using immunofluorescence and Brn3a-specific markers. Reactive glia and microglial activation were studied by GFAP, CD68, and Iba1 staining. Flow cytometry was used to quantify day ex-vivo 4 (DEV 4) microglial proliferation and M1 activation by measuring the number of CD11b+, CD68+, and CD11b+/CD68+ cells after treatment with control solvent or Y-33075. The modulation of gene expression was measured by RNA-seq analysis on control and Y-33075-treated explants and glial and pro-inflammatory cytokine gene expression was validated by RT-qPCR. RESULTS: Y-27632 and H-1152 did not significantly protect RGCs. By contrast, at DEV 4, 50 µM Y-33075 significantly increased RGC survival. Immunohistology showed a reduced number of Iba1+/CD68+ cells and limited astrogliosis with Y-33075 treatment. Flow cytometry confirmed lower CD11b+, CD68+, and CD11b+/CD68+ cell numbers in the Y-33075 group. RNA-seq showed Y-33075 inhibited the expression of M1 microglial markers (Tnfα, Il-1ß, Nos2) and glial markers (Gfap, Itgam, Cd68) and to reduce apoptosis, ferroptosis, inflammasome formation, complement activation, TLR pathway activation, and P2rx7 and Gpr84 gene expression. Conversely, Y-33075 upregulated RGC-specific markers, neurofilament formation, and neurotransmitter regulator expression, consistent with its neuroprotective effects. CONCLUSION: Y-33075 demonstrates marked neuroprotective and anti-inflammatory effects, surpassing the other tested ROCKis (Y-27632 and H-1152) in preventing RGC death and reducing microglial inflammatory responses. These findings highlight its potential as a therapeutic option for glaucoma.


Assuntos
Fármacos Neuroprotetores , Piridinas , Células Ganglionares da Retina , Quinases Associadas a rho , Animais , Piridinas/farmacologia , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Ratos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Retina/metabolismo , Amidas/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Ratos Sprague-Dawley , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Inibidores de Proteínas Quinases/farmacologia , Masculino , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/metabolismo , Isoquinolinas , Sulfonamidas
6.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4597-4606, 2024 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-39307798

RESUMO

This study aims to reveal the protective effect and mechanism of Zuogui Jiangtang Jieyu Formula on the damage to hippo-campal synaptic microenvironment in rats with diabetes-related depression(DD) via regulating microglia immune receptor molecule-like family member f(CD300f)/Toll-like receptor 4(TLR4) signal. Firstly, the model of DD rats was established by a two-week high-fat diet+STZ injection+chronic mild and unpredictable stress plus isolation for 28 days. The rats were randomly divided into normal group, model group, CD300f blocker(CLM1, 2 µg·kg~(-1)) group, CD300f agonist(Fcγ, 5 µg·kg~(-1)) group, positive drug(0.18 g·kg~(-1) metformin+1.8 mg·kg~(-1) fluoxetine) group, and high-dose and low-dose(20.52 and 10.26 g·kg~(-1)) Zuogui Jiangtang Jieyu Formula groups. Depression-like behavior of rats was evaluated by open field and forced swimming experiments. The levels of blood glucose and insulin were detected by biochemical analysis. The levels of tumor necrosis factor α(TNF-α), interleukin-1ß(IL-1ß), indoleamine 2, 3-dioxygenase(IDO), 5-hydroxytryptamine(5-HT), and dopamine(DA) in the hippocampus were detected by enzyme-linked immunosorbent assay. The changes in the synaptic ultrastructure in hippocampal neurons of rats were observed by transmission electron microscopy. The protein expressions of CD300f, TLR4, synaptophysin(SYN), and postsynaptic density protein 95(PSD-95) in microglial cells of the hippocampus were detected by immunofluorescence and Western blot. The results indicated that compared with that in the normal group, the total movement distance in open field experiments was reduced in the model group, and the immobility time in forced swimming experiments increased, with an elevated insulin level in serum, as well as TNF-α, IL-1ß, and IDO levels in the hippocampus. The 5-HT and DA levels in the hippocampus were reduced. In addition, the CD300f expression was down-regulated in microglial cells of the hippocampus, and the TLR4 expression was up-regulated. Moreover, the expression of synapse-related proteins SYN and PSD-95 in hippocampal neurons decreased, and the synaptic ultrastructure of hippocampal neurons was significantly damaged. Compared with the model group, the CD300f blocker and agonist aggravated and alleviated the above abnormal changes, respectively. High-dose and low-dose Zuogui Jiangtang Jieyu Formula could significantly improve the above depression-like beha-vior in rats, inhibit the abnormal increase of TNF-α, IL-1ß, and IDO and the decrease of 5-HT and DA, effectively increase the expression of CD300f in microglial cells, and decrease the expression of TLR4. They could up-regulate the protein expression of presyna-ptic membrane SYN and postsynaptic membrane PSD-95 in hippocampal neurons and finally improve the damage to the hippocampal synaptic microenvironment. In conclusion, this research confirmed that Zuogui Jiangtang Jieyu Formula effectively alleviated the depression-like behavior and inhibited inflammatory activation of microglial cells in the hippocampus of rats with DD, and the mechanism might be related to the regulation of CD300f/TLR4 signal to alleviate the damage to hippocampal synaptic microenvironment.


Assuntos
Depressão , Medicamentos de Ervas Chinesas , Hipocampo , Microglia , Neurônios , Ratos Sprague-Dawley , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Ratos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Humanos , Receptores Imunológicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética
7.
Biomed Pharmacother ; 179: 117263, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39243431

RESUMO

Post-stroke depression (POSD) is a common difficulty and most predominant emotional syndrome after stroke often consequences in poor outcomes. In the present investigation, we have designed and studied the neurologically active celastrol/minocycline encapsulated with macrophages-derived exosomes functionalized PLGA nanoformulations (CMC-EXPL) to achieve enhanced anti-inflammatory behaviour and anti-depressant like activity in a Rat model of POSD. The animal model of POSD was established through stimulating process with chronic unpredictable mild stress (CUM) stimulations after procedure of middle cerebral artery occlusion (MCAO). Neuronal functions and Anti-inflammation behaviours were observed by histopathological (H&E) examination and Elisa analyses, respectively. The anti-depressive activity of the nanoformulations treated Rat models were evaluated by open-field and sucrose preference test methods. Microglial polarization was evaluated via flow-cytometry and qRT-PCR observations. The observed results exhibited that prepared nanoformulations reduced the POSD-stimulated depressive-like activities in rat models as well alleviated the neuronal damages and inflammatory responses in the cerebral hippocampus. Importantly, prepared CMC-EXPL nanoformulation effectively prevented the M1 pro-inflammatory polarization and indorsed M2 anti-inflammatory polarization, which indicates iNOS and CD86 levels significantly decreased and upsurged Arg-1 and CD206 levels. CMC-EXPL nanoformulation suggestively augmented anti-depressive activities and functional capability and also alleviated brain inflammation in POSD rats, demonstrating its therapeutic potential for POSD therapy.


Assuntos
Depressão , Modelos Animais de Doenças , Portadores de Fármacos , Exossomos , Macrófagos , Microglia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Acidente Vascular Cerebral , Animais , Exossomos/metabolismo , Depressão/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Microglia/efeitos dos fármacos , Microglia/metabolismo , Masculino , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Portadores de Fármacos/química , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Nanopartículas/química , Doenças Neuroinflamatórias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Composição de Medicamentos
8.
Biomed Pharmacother ; 179: 117338, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39278187

RESUMO

A recent study has introduced a recombinant fusion protein, consisting of the extracellular domain (ECD) of p75 and the Fc fragment of human immunoglobulin IgG1 (p75ECD-Fc), as a multifaceted agent within the nervous system. This research aimed to assess the effects of p75ECD-Fc on neuronal growth and the restoration of neurological functions in rats afflicted with neonatal hypoxic-ischemic encephalopathy (NHIE). In vitro analyses revealed that 1 µM p75ECD-Fc treatment markedly increased cell viability and facilitated neurite outgrowth in neurons exposed to oxygen-glucose deprivation (OGD). Subsequent in vivo studies determined that a dose of 78.6 µg/3 µl of p75ECD-Fc significantly mitigated brain damage and both acute and long-term neurological impairments, outperforming the therapeutic efficacy of hypothermia, as evidenced through behavioral assessments. Additionally, in vivo immunostaining showed that p75ECD-Fc administration enhanced neuronal survival and regeneration, and reduced astrocytosis and microglia activation in the cortex and hippocampus of NHIE rats. A noteworthy shift from A1 to A2 astrocyte phenotypes and from M1 to M2 microglia phenotypes was observed after p75ECD-Fc treatment. Furthermore, a co-expression of the p75 neurotrophin receptor (p75NTR) and Nestin was identified, with an overexpression of Nestin alleviating the neurological dysfunction induced by NHIE. Mechanistically, the neuroprotective effects of p75ECD-Fc, particularly its inhibition of neuronal apoptosis post-OGD, may be attributed to Nestin. Taken together, these results highlight the neuroprotective and anti-inflammatory effects of p75ECD-Fc treatment through the modulation of glial cell phenotypes and the Nestin-mediated inhibition of neuronal apoptosis, positioning it as a viable therapeutic approach for NHIE.


Assuntos
Animais Recém-Nascidos , Apoptose , Hipóxia-Isquemia Encefálica , Fragmentos Fc das Imunoglobulinas , Nestina , Ratos Sprague-Dawley , Animais , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/metabolismo , Apoptose/efeitos dos fármacos , Nestina/metabolismo , Fragmentos Fc das Imunoglobulinas/farmacologia , Ratos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Masculino , Sobrevivência Celular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/metabolismo , Humanos , Receptores de Fator de Crescimento Neural/metabolismo , Modelos Animais de Doenças
9.
Nanotechnology ; 35(49)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39284320

RESUMO

Neuronanomedicine is an emerging field bridging the gap between neuromedicine and novel nanotherapeutics. Despite promise, clinical translation of neuronanomedicine remains elusive, possibly due to a dearth of information regarding the effect of the protein corona on these neuronanomedicines. The protein corona, a layer of proteins adsorbed to nanoparticles following exposure to biological fluids, ultimately determines the fate of nanoparticles in biological systems, dictating nanoparticle-cell interactions. To date, few studies have investigated the effect of the protein corona on interactions with brain-derived cells, an important consideration for the development of neuronanomedicines. Here, two polymeric nanoparticles, poly(lactic-co-glycolic acid) (PLGA) and PLGA-polyethylene glycol (PLGA-PEG), were used to obtain serum-derived protein coronas. Protein corona characterization and liquid chromatography mass spectrometry analysis revealed distinct differences in biophysical properties and protein composition. PLGA protein coronas contained high abundance of globins (60%) and apolipoproteins (21%), while PLGA-PEG protein coronas contained fewer globins (42%) and high abundance of protease inhibitors (28%). Corona coated PLGA nanoparticles were readily internalized into microglia and neuronal cells, but not into astrocytes. Internalization of nanoparticles was associated with pro-inflammatory cytokine release and decreased neuronal cell viability, however, viability was rescued in cells treated with corona coated nanoparticles. These results showcase the importance of the protein corona in mediating nanoparticle-cell interactions.


Assuntos
Encéfalo , Nanopartículas , Polietilenoglicóis , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coroa de Proteína , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Nanopartículas/química , Polietilenoglicóis/química , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Ácido Láctico/química , Ácido Láctico/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Ácido Poliglicólico/química
10.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39337503

RESUMO

The role of astroglial and microglial cells in the pathogenesis of epilepsy is currently under active investigation. It has been proposed that the activity of these cells may be regulated by the agonists of peroxisome proliferator-activated nuclear receptors (PPARs). This study investigated the effects of a seven-day treatment with the PPAR ß/δ agonist GW0742 (Fitorine, 5 mg/kg/day) on the behavior and gene expression of the astroglial and microglial proteins involved in the regulation of epileptogenesis in the rat brain within a lithium-pilocarpine model of temporal lobe epilepsy (TLE). TLE resulted in decreased social and increased locomotor activity in the rats, increased expression of astro- and microglial activation marker genes (Gfap, Aif1), pro- and anti-inflammatory cytokine genes (Tnfa, Il1b, Il1rn), and altered expression of other microglial (Nlrp3, Arg1) and astroglial (Lcn2, S100a10) genes in the dorsal hippocampus and cerebral cortex. GW0742 attenuated, but did not completely block, some of these impairments. Specifically, the treatment affected Gfap gene expression in the dorsal hippocampus and Aif1 gene expression in the cortex. The GW0742 injections attenuated the TLE-specific enhancement of Nlrp3 and Il1rn gene expression in the cortex. These results suggest that GW0742 may affect the expression of some genes involved in the regulation of epileptogenesis.


Assuntos
Astrócitos , Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Microglia , PPAR delta , PPAR beta , Tiazóis , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Ratos , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , Masculino , Tiazóis/farmacologia , Tiazóis/uso terapêutico , PPAR beta/agonistas , PPAR beta/genética , PPAR beta/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Pilocarpina/farmacologia , Citocinas/metabolismo , Citocinas/genética , Fenóis , Compostos de Sulfidrila
11.
Clin Exp Pharmacol Physiol ; 51(11): e13917, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39285148

RESUMO

Ischaemic stroke is a common condition that can lead to cerebral ischaemia-reperfusion injury. Phillygenin (PHI), a natural bioactive compound derived from Forsythia suspensa, has been shown to play a crucial role in regulating inflammation across various diseases. However, its specific regulatory effects in ischaemic stroke progression remain unclear. In this study, we established a middle cerebral artery occlusion (MCAO) rat model. Treatment with PHI (50 or 100 mg/kg) significantly reduced cerebral infarction in MCAO rats. PHI treatment also mitigated the increased inflammatory response observed in these rats. Additionally, PHI suppressed microglial activation by reducing iNOS expression, a marker of M1-type polarization of microglia, and attenuated increased brain tissue apoptosis in MCAO rats. Furthermore, PHI's anti-inflammatory effects in MCAO rats were abrogated upon co-administration with GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) inhibitor. In summary, PHI attenuated microglial activation and apoptosis in cerebral ischaemia-reperfusion injury through PPARγ activation, suggesting its potential as a therapeutic agent for mitigating cerebral ischaemia-reperfusion injury.


Assuntos
Apoptose , Infarto da Artéria Cerebral Média , Microglia , PPAR gama , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , PPAR gama/metabolismo , Apoptose/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Ratos , Masculino , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Lignanas
12.
Nutrients ; 16(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39275198

RESUMO

Particulate matter (PM2.5) containing polycyclic aromatic hydrocarbons (PAHs) is of considerable environmental importance worldwide due to its adverse effects on human health, which are associated with neurodegenerative diseases (NDDs). Areca catechu L. (AC) fruit is known to possess various pharmacological properties; however, the anti-neuroinflammatory roles of AC on the suppression of PAH-induced neuroinflammation are still limited. Thus, we focused on the effects and related signaling cascades of AC and its active compounds against anthracene-induced toxicity and inflammation in mouse microglial BV-2 cells. Phytochemicals in the ethanolic extract of AC (ACEE) were identified using LC-MS, and molecular docking was conducted to screen the interaction between compounds and target proteins. Significant bioactive compounds in ACEE such as arecoline, (-)-epicatechin, and syringic acid were evinced through the LC-MS spectrum. The docking study revealed that (-)-epicatechin showed the highest binding affinities against NF-κB. For cell-based approaches, anthracene induced intracellular ROS, mRNA levels of TNF-α, IL-1ß, and IL-6, and the release of TNF-α through enhancing JNK, p38, and NF-κB signaling pathways. However, the co-treatment of cells with ACEE or (-)-epicatechin could reverse those anthracene-induced changes. The overall study suggested that ACEE-derived bioactive compounds such as (-)-epicatechin may be developed as a potential anti-neuroinflammatory agent by preventing inflammation-mediated NDDs.


Assuntos
Antracenos , Anti-Inflamatórios , Areca , Microglia , Simulação de Acoplamento Molecular , Extratos Vegetais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antracenos/farmacologia , Anti-Inflamatórios/farmacologia , Linhagem Celular , Areca/química , Compostos Fitoquímicos/farmacologia , Nozes/química , Transdução de Sinais/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , NF-kappa B/metabolismo
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1589-1598, 2024 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-39276055

RESUMO

OBJECTIVE: To investigate the mechanism underlying the neuroprotective effect of linarin (LIN) against microglia activation-mediated inflammation and neuronal apoptosis following spinal cord injury (SCI). METHODS: Fifty C57BL/6J mice (8- 10 weeks old) were randomized to receive sham operation, SCI and linarin treatment at 12.5, 25, and 50 mg/kg following SCI (n=10). Locomotor function recovery of the SCI mice was assessed using the Basso Mouse Scale, inclined plane test, and footprint analysis, and spinal cord tissue damage and myelination were evaluated using HE and LFB staining. Nissl staining, immunofluorescence assay and Western blotting were used to observe surviving anterior horn motor neurons in injured spinal cord tissue. In cultured BV2 cells, the effects of linarin against lipopolysaccharide (LPS)­induced microglia activation, inflammatory factor release and signaling pathway changes were assessed with immunofluorescence staining, Western blotting, RT-qPCR, and ELISA. In a BV2 and HT22 cell co-culture system, Western blotting was performed to examine the effect of linarin against HT22 cell apoptosis mediated by LPS-induced microglia activation. RESULTS: Linarin treatment significantly improved locomotor function (P < 0.05), reduced spinal cord damage area, increased spinal cord myelination, and increased the number of motor neurons in the anterior horn of the SCI mice (P < 0.05). In both SCI mice and cultured BV2 cells, linarin effectively inhibited glial cell activation and suppressed the release of iNOS, COX-2, TNF-α, IL-6, and IL-1ß, resulting also in reduced neuronal apoptosis in SCI mice (P < 0.05). Western blotting suggested that linarin-induced microglial activation inhibition was mediated by inhibition of the TLR4/NF- κB signaling pathway. In the cell co-culture experiments, linarin treatment significantly decreased inflammation-mediated apoptosis of HT22 cells (P < 0.05). CONCLUSION: The neuroprotective effect of linarin is medicated by inhibition of microglia activation via suppressing the TLR4/NF­κB signaling pathway, which mitigates neural inflammation and reduce neuronal apoptosis to enhance motor function of the SCI mice.


Assuntos
Apoptose , Camundongos Endogâmicos C57BL , Microglia , NF-kappa B , Transdução de Sinais , Traumatismos da Medula Espinal , Receptor 4 Toll-Like , Animais , Camundongos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Receptor 4 Toll-Like/metabolismo , Apoptose/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Cumarínicos/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Glicosídeos
14.
Virol J ; 21(1): 219, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285274

RESUMO

BACKGROUND: To investigate the mechanism of Golgi matrix protein 130(GM130) regulating the antiviral immune response of TLR3 after herpes simplex virus type 1(HSV-1) infection of microglia cells. We explored the regulatory effects of berberine on the immune response mediated by GM130 and TLR3. METHODS: An in vitro model of HSV-1 infection was established by infecting BV2 cells with HSV-1. RESULTS: Compared to the uninfected group, the Golgi apparatus (GA) fragmentation and GM130 decreased after HSV-1 infection; TLR3 increased at 6 h and began to decrease at 12 h after HSV-1 infection; the secretion of interferon-beta(IFN-ß), tumour necrosis factor alpha(TNF-α), and interleukin-6(IL-6) increased after infection. Knockdown of GM130 aggravated fragmentation of the GA and caused TLR3 to further decrease, and the virus titer also increased significantly. GM130 knockdown inhibits the increase in TLR3 and inflammatory factors induced by TLR3 agonists and increases the viral titer. Overexpression of GM130 alleviated fragmentation of the GA induced by HSV-1, partially restored the levels of TLR3, and reduced viral titers. GM130 overexpression reversed the reduction in TLR3 and inflammatory cytokine levels induced by TLR3 inhibitors. Therefore, the decrease in GM130 levels caused by HSV-1 infection leads to increased viral replication by inhibiting TLR3-mediated innate immunity. Berberine can protect the GA and reverse the downregulation of GM130, as well as the downregulation of TLR3 and its downstream factors after HSV-1 infection, reducing the virus titer. CONCLUSIONS: In microglia, one mechanism of HSV-1 immune escape is disruption of the GM130/TLR3 pathway. Berberine protects the GA and enhances TLR3-mediated antiviral immune responses.


Assuntos
Regulação para Baixo , Herpesvirus Humano 1 , Imunidade Inata , Microglia , Receptor 3 Toll-Like , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Microglia/virologia , Microglia/imunologia , Microglia/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular , Evasão da Resposta Imune , Berberina/farmacologia , Citocinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Herpes Simples/imunologia , Herpes Simples/virologia
15.
Acta Biomater ; 187: 161-171, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236795

RESUMO

Traumatic brain injury (TBI) is an incurable and overwhelming disease accompanied with serve disability and huge financial burden, where the overproduced reactive oxygen species (ROS) can exacerbate the secondary injury, leading to massive apoptosis of neurons. In this study, ß-cyclodextrin (CD)-capped hyperbranched polymers containing selenium element (HSE-CD) were crosslinked with CD-modified hyaluronic acid (HA-CD) and amantadine-modified hyaluronic acid (HA-AD) to obtain a ROS-responsive ointment (R-O). The structures of synthesized polymers were characterized with 1H nuclear magnetic resonance, and the properties of ointment were investigated with rheology and antioxidation. Compared to non-ROS-responsive ointment (N-O), the R-O ointment had stronger efficiency in decreasing the ROS level in BV2 cells in vitro. In a controlled rat cortical impact (CCI) model, the R-O ointment could relieve the DNA damage and decrease apoptosis in injured area via reducing the ROS level. Besides, after the R-O treatment, the rats showed significantly less activated astrocytes and microglia, a lower level of pro-inflammatory cytokines and a higher ratio of M2/M1 macrophage and microglia. Moreover, compared to the TBI group the R-O ointment promoted the doublecortin (DCX) expression and tissue structure integrity around the cavity, and promoted the recovery of nerve function post TBI. STATEMENT OF SIGNIFICANCE: Traumatic brain injury (TBI) is an incurable and overwhelming disease, leading to severe disability and huge social burden, where reactive oxygen species (ROS) are considered as one of the most significant factors in the secondary injury of TBI. A ROS responsive supramolecular ointment containing di-selenide bonds was injected in rats with controlled cortical impact. It relieved the DNA damage and decreased apoptosis in the injured area via reducing the ROS levels, downregulated neuroinflammation, and improved neurological recovery of TBI in vivo. This designed self-adaptive biomaterial effectively regulated the pathological microenvironment in injured tissue, and achieved better therapeutic effect.


Assuntos
Lesões Encefálicas Traumáticas , Pomadas , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Selênio , Animais , Selênio/química , Selênio/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Masculino , Espécies Reativas de Oxigênio/metabolismo , Ratos , Apoptose/efeitos dos fármacos , Proteína Duplacortina , Linhagem Celular , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/metabolismo
16.
J Neuroinflammation ; 21(1): 233, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304952

RESUMO

BACKGROUND: Neuroinflammation is involved in the pathogenesis of almost every central nervous system disorder. As the brain's innate immune cells, microglia fine tune their activity to a dynamic brain environment. Previous studies have shown that repeated bouts of peripheral inflammation can trigger long-term changes in microglial gene expression and function, a form of innate immune memory. METHODS AND RESULTS: In this study, we used multiple low-dose lipopolysaccharide (LPS) injections in adult mice to study the acute cytokine, transcriptomic, and microglia morphological changes that contribute to the formation of immune memory in the frontal cortex, hippocampus, and striatum, as well as the long-term effects of these changes on behavior. Training and tolerance of gene expression was shared across regions, and we identified 3 unique clusters of DEGs (2xLPS-sensitive, 4xLPS-sensitive, LPS-decreased) enriched for different biological functions. 2xLPS-sensitive DEG promoters were enriched for binding sites for IRF and NFkB family transcription factors, two key regulators of innate immune memory. We quantified shifts in microglia morphological populations and found that while the proportion of ramified and rod-like microglia mostly remained consistent within brain regions and sexes with LPS treatment, there was a shift from ameboid towards hypertrophic morphological states across immune memory states and a dynamic emergence and resolution of events of microglia aligning end-to-end with repeated LPS. CONCLUSIONS: Together, findings support the dynamic regulation of microglia during the formation of immune memories in the brain and support future work to exploit this model in brain disease contexts.


Assuntos
Encéfalo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/imunologia , Feminino , Citocinas/metabolismo
17.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39337650

RESUMO

Anxiety disorder is a universal disease related to neuro-inflammation. Solanesol has shown positive effects because of its anti-inflammatory, anti-tumor, and anti-ulcer properties. This study focused on determining whether solanesol could ameliorate anxiety-like behaviors in a mouse model of neuro-inflammation and identify its working targets. Complete Freund's adjuvant (CFA)-induced mice that were intra-peritoneally administered with solanesol (50 mg/kg) for 1 week showed a statistically significant reduction in anxiety-like behaviors, as measured by open field and elevated plus-maze tests. Western blot analysis revealed that CFA-induced upregulation of the levels of pro-inflammatory cytokines interleukin (IL)-1ß and tumor necrosis factor α (TNF-α), which played crucial roles in regulating anxiety, returned to normal in the anterior cingulate cortex (ACC) after solanesol treatment. The level of T cell-restricted intracellular antigen-1 (TIA1), a key component of stress granules, also decreased in the ACC. Moreover, immunofluorescence results indicated that solanesol suppressed CFA-induced microglial and astrocytic activation in the ACC. CFA was injected in the hind paws of TIA1Nestin conditional knockout (cKO) mice to confirm whether TIA1 is a potential modulatory molecule that influences pro-inflammatory cytokines and anxiety-like behaviors. Anxiety-like behaviors could not be observed in cKO mice after CFA injection with IL-1ß and TNF-α levels not remarkedly increasing. Our findings suggest that solanesol inhibits neuro-inflammation by decreasing the TIA1 level to reduce IL-1ß and TNF-α expression, meanwhile inhibiting microglial and astrocytic activation in the ACC and ultimately ameliorating anxiety-like behaviors in mice.


Assuntos
Ansiedade , Modelos Animais de Doenças , Adjuvante de Freund , Giro do Cíngulo , Animais , Camundongos , Ansiedade/tratamento farmacológico , Masculino , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Comportamento Animal/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo
18.
J Alzheimers Dis ; 101(3): 787-796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39240634

RESUMO

Background: Aggregated forms of the amyloid-ß (Aß) peptides which form protofibrils and fibrils in the brain are signatures of Alzheimer's disease (AD). Aggregates are also recognized by microglia, which in early phases may be protective and in later phases contribute to the pathology. We have identified several small molecules, decoys which interfere with Aß oligomerization and induce other aggregation trajectories leading to aggregated macrostructures which are non-toxic. Objective: This study investigates whether the small-molecule decoys affect microglial activation in terms of cytokine secretion and phagocytosis of Aß peptide. Methods: The effects of the decoys (NSC 69318, NSC 100873, NSC 16224) were analyzed in a model of human THP-1 monocytes differentiated to microglia-like cells. The cells were activated by Aß40 and Aß42 peptides, respectively, and after treatment with each decoy the secreted levels of pro-inflammatory cytokines and the Aß phagocytosis were analyzed. Results: NSC16224, which generates a double-stranded aggregate of thin protofibrils, was found to block Aß40- and Aß42-induced increase in microglial secretion of pro-inflammatory cytokines. NSC 69318, selective for neurotoxicity of Aß42, and NSC 100873 did not significantly reduce the microglial activation in terms of cytokine secretion. The uptake of Aß42 was not affected by anyone of the decoys. Conclusions: Our findings open the possibility that the molecular decoys of Aß aggregation may block microglial activation by Aß40 and Aß42 in addition to blocking neurotoxicity as shown previously.


Assuntos
Peptídeos beta-Amiloides , Microglia , Fragmentos de Peptídeos , Fagocitose , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Microglia/efeitos dos fármacos , Microglia/metabolismo , Humanos , Fagocitose/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Citocinas/metabolismo , Células THP-1
19.
Ecotoxicol Environ Saf ; 284: 117039, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39270417

RESUMO

AIM: The present work explored the mechanism of dimethyl phthalate (DMP, the environmental contaminant) exposure in inducing cognitive impairment. METHODS: Targets and regulatory networks related to DMP-brain injury-cognitive impairment were analyzed through network pharmacology. DMP exposure was carried out to simulate DMP environmental uptake, whereas Morris water maze was performed for examining cognitive impairment. Additionally, inflammatory cytokine levels within tissues were measured. hematoxylin-eosin staining(H&E) and Nissl staining was conducted to examine brain tissue injury, while Western blot was carried out for identifying protein levels. After applying.Small interfering RNA(siRNA-COX2) and celecoxib-COX2 inhibitors separately, we analyzed impacts of DMP. Besides, in vitro experiments were performed to analyze impacts of DMP on microglial activation. RESULTS: As suggested by network pharmacology,Cyclooxygenase-2-PTGS2 (COX2) showed significant relation to DMP, and it exerted its effect via COX2. Following DMP exposure, mice experienced obvious cognitive impairment and brain damage, besides, microglial cells were activated, and inflammatory cytokines were up-regulated. Applying siRNA-COX2 and celecoxib-COX2 suppressed DMP's impact and mitigated mouse cognitive impairment. Based on in vitro analysis, DMP led to microglial activation and neuroinflammation. CONCLUSION: DMP exposure causes neuroinflammation via the COX2-regulated microglial activation, thus leading to cognitive impairment. COX2 may serve as the key action target of DMP.


Assuntos
Disfunção Cognitiva , Ciclo-Oxigenase 2 , Doenças Neuroinflamatórias , Ácidos Ftálicos , Animais , Disfunção Cognitiva/induzido quimicamente , Camundongos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Ácidos Ftálicos/toxicidade , Doenças Neuroinflamatórias/induzido quimicamente , Masculino , Microglia/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Camundongos Endogâmicos C57BL
20.
ACS Chem Neurosci ; 15(19): 3576-3586, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39297418

RESUMO

Considerable evidence indicates that the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays key roles in human pathophysiology, suggesting it as a potential drug target. Currently, studies have yet to develop compounds that are promising therapeutics in the clinic by targeting the NLRP3 inflammasome. Herein, we aim to further biologically characterize a previously identified small-molecule inhibitor of the NLRP3 inflammasome from our group, YM-I-26, to confirm its functional activities. We showed that YM-I-26 is highly selective toward the NLRP3 inflammasome and binds to NLRP3 directly. A systemic analysis revealed YM-I-26 with inflammation-related and immunomodulatory activities by the Eurofins BioMAP Diversity PLUS panel. In addition, studies using the mouse microglia BV2 cell model demonstrated that YM-I-26 is not cytotoxic, improved the phagocytotic functions of BV2 cells toward beta-amyloid, and suppressed the production of cytokines of IL-1ß and IL-10 upon the activation of the NLRP3 inflammasome. Collectively, our studies support the functional activities of YM-I-26 as a NLRP3 inhibitor in physiologically relevant cell models, and warrant future studies of YM-I-26 and its analogs to advance the drug development as potential therapeutics.


Assuntos
Inflamassomos , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sulfonamidas , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Humanos , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA