Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Electron. j. biotechnol ; Electron. j. biotechnol;46: 38-49, jul. 2020. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1223238

RESUMO

BACKGROUND: Quizalofop-p-ethyl (QPE), a unitary R configuration aromatic oxyphenoxypropionic acid ester (AOPP) herbicide, was widely used and had led to detrimental environmental effects. For finding the QPEdegrading bacteria and promoting the biodegradation of QPE, a series of studies were carried out. RESULTS: A QPE-degrading bacterial strain YC-XJ1 was isolated from desert soil and identified as Methylobacterium populi, which could degrade QPE with methanol by cometabolism. Ninety-seven percent of QPE (50 mg/L) could be degraded within 72 h under optimum biodegradation condition of 35°C and pH 8.0. The maximum degradation rate of QPE was 1.4 mg/L/h, and the strain YC-XJ1 exhibited some certain salinity tolerance. Two novel metabolites, 2-hydroxy-6-chloroquinoxaline and quinoxaline, were found by high-performance liquid chromatography/mass spectroscopy analysis. The metabolic pathway of QPE was predicted. The catalytic efficiency of strain YC-XJ1 toward different AOPPs herbicides in descending order was as follows: haloxyfop-pmethyl ≈ diclofop-methyl ≈ fluazifop-p-butyl N clodinafop-propargyl N cyhalofop-butyl N quizalofop-p-ethyl N fenoxaprop-p-ethyl N propaquizafop N quizalofop-p-tefuryl. The genome of strain YC-XJ1 was sequenced using a combination of PacBio RS II and Illumina platforms. According to the annotation result, one α/ß hydrolase gene was selected and named qpeh1, for which QPE-degrading function has obtained validation. Based on the phylogenetic analysis and multiple sequence alignment with other QPE-degrading esterases reported previously, the QPEH1 was clustered with esterase family V. CONCLUSION: M. populi YC-XJ1 could degrade QPE with a novel pathway, and the qpeh1 gene was identified as one of QPE-degrading esterase gene.


Assuntos
Propionatos/metabolismo , Quinoxalinas/metabolismo , Methylobacterium/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Methylobacterium/enzimologia , Methylobacterium/genética , Análise de Sequência de Proteína , Esterases/análise , Esterases/metabolismo , Herbicidas , Hidrolases/análise , Hidrolases/metabolismo , Hidrólise
2.
Extremophiles ; 18(3): 561-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24638260

RESUMO

The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.


Assuntos
Metano/metabolismo , Microbiota , Microbiologia do Solo , Álcalis/análise , Proteínas de Bactérias/metabolismo , Methylobacterium/enzimologia , Methylobacterium/isolamento & purificação , Oxirredução , Oxigenases/metabolismo , Solo/química
3.
J Appl Microbiol ; 116(2): 408-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24188110

RESUMO

AIM: To develop co-aggregated bacterial inoculant comprising of Methylobacterium oryzae CBMB20/Methylobacterium suomiense CBMB120 strains with Azospirillum brasilense (CW903) strain and testing their efficiency as inoculants for plant growth promotion (PGP). METHODS AND RESULTS: Biofilm formation and co-aggregation efficiency was studied between A. brasilense CW903 and methylobacterial strains M. oryzae CBMB20 and M. suomiense CBMB120. Survival and release of these co-aggregated bacterial strains entrapped in alginate beads were assessed. PGP attributes of the co-aggregated bacterial inoculant were tested in tomato plants under water-stressed conditions. Results suggest that the biofilm formation efficiency of the CBMB20 and CBMB120 strains increased by 15 and 34%, respectively, when co-cultivated with CW903. Co-aggregation with CW903 enhanced the survivability of CBMB20 strain in alginate beads. Water stress index score showed least stress index in plants inoculated with CW903 and CBMB20 strains maintained as a co-aggregated inoculant. CONCLUSIONS: This study reports the development of co-aggregated cell inoculants containing M. oryzae CBMB20 and A. brasilense CW903 strains conferred better shelf life and stress abatement in inoculated tomato plants. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings could be extended to other PGP bacterial species to develop multigeneric bioinoculants with multiple benefits for various crops.


Assuntos
Alginatos/química , Azospirillum brasilense/fisiologia , Biofilmes/crescimento & desenvolvimento , Methylobacterium/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Azospirillum brasilense/enzimologia , Azospirillum brasilense/ultraestrutura , Desidratação/prevenção & controle , Secas , Etilenos/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrólise , Peroxidação de Lipídeos , Solanum lycopersicum/microbiologia , Malondialdeído/metabolismo , Methylobacterium/enzimologia , Methylobacterium/ultraestrutura , Microscopia Eletrônica de Varredura , Microesferas , Peroxidase/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA