Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Fungal Biol ; 128(4): 1827-1835, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876535

RESUMO

Metarhizium rileyi has a broad biocontrol spectrum but is highly sensitive to abiotic factors. A Colombian isolate M. rileyi Nm017 has shown notorious potential against Helicoverpa zea. However, it has a loss of up to 22 % of its conidial germination after drying, which limits its potential as a biocontrol agent and further commercialization. Conidial desiccation resistance can be enhanced by nutritional supplements, which promotes field adaptability and facilitates technological development as a biopesticide. In this study, the effect of culture medium supplemented with linoleic acid on desiccation tolerance in Nm017 conidia was evaluated. Results showed that using a 2 % linoleic acid-supplemented medium increased the relative germination after drying by 41 % compared to the control treatment, without affecting insecticidal activity on H. zea. Also, the fungus increased the synthesis of trehalose, glucose, and erythritol during drying, independently of linoleic acid use. Ultrastructural analyses of the cell wall-membrane showed a loss of thickness by 22 % and 25 %, in samples obtained from 2 % linoleic acid supplementation and the control, respectively. Regarding its morphological characteristics, conidia inner area from both treatments did not change after drying. However, conidia from the control had a 24 % decrease in length/width ratio, whereas there was no alteration in conidia from acid linoleic. The average value of dry conidia elasticity coefficient from linoleic acid treatment was 200 % above the control. Medium supplementation with linoleic acid is a promising fermentation strategy for obtaining more tolerant conidia without affecting production and biocontrol parameters, compatible solutes synthesis, or modifying its cell configuration.


Assuntos
Meios de Cultura , Ácido Linoleico , Metarhizium , Esporos Fúngicos , Metarhizium/fisiologia , Metarhizium/efeitos dos fármacos , Metarhizium/crescimento & desenvolvimento , Ácido Linoleico/metabolismo , Ácido Linoleico/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Meios de Cultura/química , Animais , Dessecação , Controle Biológico de Vetores , Colômbia , Mariposas/microbiologia
2.
Artigo em Espanhol | LILACS | ID: biblio-1381112

RESUMO

Las dermatofitosis corresponden a un grupo de enfermedades micóticas comunes en piel y fanéreas, donde Trichophyton rubrum es el agente causante más frecuente a nivel mundial y presente en nuestros 2 casos de pacientes masculinos con estas micosis, una en uñas y la otra en piel. Sin embargo, el enfoque de esta publicación se basa principalmente en la presencia de 2 interesantes contaminantes (uno en cada caso clínico) presentes solo en los cultivos de las primeras siembras como saprófitos y por ende como propágulos de dispersión, asociados al ambiente y sin intervención clínica demostrada en ambas micosis. La descripción morfofisiológica de estos 2 contaminantes Metarhizium purpureo-genum(similis) y Monascus ruber fue más bien una curiosidad esencial que el micólogo clínico adquiere en su contínua formación y ante la posibilidad de infecciones mixtas, pudiendo conjugar sus hallazgos junto al análisis taxonómico y los factores geográficos y edáficos asociados a su distribución. (AU)


Dermatophytoses belongs to a group of common mycotic diseases in skin and pharynals, where Trichophyton rubrum is the most frequent causative agent worldwide and present in our 2 cases of male patients with these mycoses, one in nails and the other in skin. However, the focus of this publication is mainly about the presence of 2 interesting contaminants (one in each clinical case) present only in the crops of the first sowings as saprophytes and therefore as dispersal propagules, associated with the environment and without clinical intervention demonstrated in both mycoses. The morphophysiological description of these 2 contaminants, Metarhizium purpureogenum (similis) and Monascus ruber was rather an essential curiosity that the clinical mycologist acquires in his continuous training and in the face of the possibility of mixed infections, being able to combine his findings together with the taxonomic analysis and the geographic and edaphic factors associated with its distribution. (AU)


Assuntos
Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Trichophyton/crescimento & desenvolvimento , Monascus/crescimento & desenvolvimento , Metarhizium/crescimento & desenvolvimento , Tinha/microbiologia , Trichophyton/isolamento & purificação , Trichophyton/ultraestrutura , Cladosporium/crescimento & desenvolvimento , Monascus/isolamento & purificação , Olea/microbiologia , Metarhizium/isolamento & purificação
3.
Sci Rep ; 11(1): 7233, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790337

RESUMO

The eucalyptus snout beetle (ESB), Gonipterus platensis, is endemic to Australia but has become a major invasive, destructive pest of Brazilian eucalyptus plantations. Efforts to develop insecticides based on entomopathogenic fungi against ESB are limited by the lack of known virulent strains. We therefore explored the virulence of indigenous Brazilian strains of major entomopathogenic fungi-Beauveria spp. and Metarhizium anisopliae-against ESB adults. We found widely varying virulence and later capacities for conidial production on infected adult cadavers. Two strains stood out, B. bassiana IBCB-240 and M. anisopliae IBCB-364, as especially lethal for ESB adults under laboratory conditions, sporulated abundantly on infected insects, and also outperformed comparable strains used in commercial mycoinsecticides. Notably, B. bassiana IBCB-240 exhibited lower LT50 values at low inoculum levels (≤ 107 conidia mL-1) and smaller LC50 values than M. anisopliae IBCB-364. Taken together, this study emphasizes natural variation in virulence among indigenous Beauveria and Metarhizium strains against ESB adults and identifies fungal strains with superior lethality to existing commercialized strains for managing this eucalyptus pest in Brazil.


Assuntos
Beauveria/crescimento & desenvolvimento , Besouros/microbiologia , Eucalyptus/parasitologia , Metarhizium/crescimento & desenvolvimento , Controle Biológico de Vetores , Animais , Brasil , Besouros/crescimento & desenvolvimento
4.
Salud pública Méx ; 62(4): 410-416, jul.-ago. 2020. graf
Artigo em Espanhol | LILACS | ID: biblio-1377332

RESUMO

Resumen: Objetivo: Evaluar el efecto de la combinación de Metarhizium anisopliae y Gliocladium virens, ambos con Aqua Reslin Super, sobre oviposición, eclosión y emergencia de Aedes aegypti. Material y métodos: Se realizaron evaluaciones para determinar el efecto de los tratamientos impregnados en papel filtro y expuestos dentro de recipientes de plástico sobre la oviposición, eclosión y emergencia de Aedes aegypti. Resultados: Los resultados indicaron que las combinaciones hongo e insecticida no afectaron el comportamiento de oviposición, pero sí la eclosión de los huevos y la emergencia del adulto. Conclusión: Con los resultados se puede concluir que la combinación de hongos + insecticida puede ser una buena opción para aplicarse en sitios de oviposición con miras al desarrollo de una ovitrampa letal.


Abstract: Objective: To evaluate the effect of the combination of Metarhizium anisopliae and Gliocladium virens, both with Aqua Reslin Super, on the oviposition, hatching and emergence of Aedes aegypti. Materials and methods: Evaluations were carried out to determine the effect of treatments impregnated on filter paper and exposed within plastic containers on the oviposition, hatching and emergency of Aedes aegypti. Results: The results indicated that the fungus and insecticide combinations did not affect the oviposition behavior, but if the hatching of the eggs and the adult's emergency. Conclusion: With the results it can be concluded that the combination of fungi + insecticide can be a good option to be applied in oviposition sites with a view to the development of a lethal ovitrap.


Assuntos
Animais , Feminino , Oviposição , Butóxido de Piperonila , Piretrinas , Aedes/anatomia & histologia , Hypocrea , Metarhizium , Inseticidas , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Controle de Mosquitos/métodos , Hypocrea/efeitos dos fármacos , Hypocrea/crescimento & desenvolvimento , Metarhizium/efeitos dos fármacos , Metarhizium/crescimento & desenvolvimento
5.
Fungal Biol ; 124(8): 689-699, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690250

RESUMO

The fungal genus Metarhizium comprises entomopathogenic species capable of producing overwintering structures known as microsclerotia. These structures offer many advantages in pest control due to the formation of infective conidia in situ and their persistence in the environment under adverse conditions. In addition, the in vitro production of Metarhizium microsclerotia under controlled liquid fermentation is faster and with greater process control than the production of aerial conidia. However, the potential of Metarhizium microsclerotia to control pests from the orders Lepidoptera and Hemiptera is unexplored. In this study, we examined the ability of Metarhizium spp. microsclerotia to promote corn growth and to provide plant protection against Spodoptera frugiperda (Lepidoptera: Noctuidae) and Dalbulus maidis (Hemiptera: Cicadellidae), through seed coating using microsclerotial granules. A screening to find higher microsclerotia producers was conducted by culturing 48 native Brazilian isolates of Metarhizium spp. (Metarhizium anisopliae, Metarhizium robertsii, Metarhizium humberi and Metarhizium sp. indeterminate). The best microsclerotia producers, M. anisopliae ESALQ1814, M. robertsii ESALQ2450 and M. humberi ESALQ1638 improved the leaf area, plant height, root length, and dry weight of plants compared to un-inoculated plants. Significant reduction in S. frugiperda survival (mortality > 55% after 7 days) was observed when larvae were fed on corn plants treated with any of the three Metarhizium species. Conversely, survival of D. maidis adults were unaffected by feeding on fungus-inoculated plants. Our results suggest that microsclerotia of Metarhizium spp. may act as biostimulants and to provide protection against S. frugiperda in corn through seed coating, thus adding an innovative strategy into the integrated management of this major worldwide pest.


Assuntos
Metarhizium/crescimento & desenvolvimento , Sementes/química , Spodoptera/fisiologia , Zea mays/química , Animais , Brasil , Larva , Controle Biológico de Vetores
6.
Fungal Biol ; 124(8): 714-722, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690253

RESUMO

We investigated the comparative susceptibility to heat and UV-B radiation of blastospores and aerial conidia of Metarhizium spp. (Metarhizium robertsii IP 146, Metarhizium anisopliae s.l. IP 363 and Metarhizium acridum ARSEF 324) and Beauveria bassiana s.l. (IP 361 and CG 307). Conidia and blastospores were produced in solid or liquid Adámek-modified medium, respectively, and then exposed to heat (45 ± 0.2 °C) in a range of 0 (control) to 360 min; the susceptibility of fungal propagules to heat exposures was assessed to express relative viability. Similarly, both propagules of each isolate were also exposed to a range of 0 (control) to 8.1 kJ m-2 under artificial UV-B radiation. Our results showed that fungal isolates, propagule types and exposure time or dose of the stressor source play critical roles in fungal survival challenged with UV-B and heat. Conidia of ARSEF 324, IP 363, IP 146 and IP 361 exposed to heat survived significantly longer than their blastospores, except for blastospores of CG 307. Conidia and blastospores of IP 146 and IP 363 were equally tolerant to UV-B radiation. We claim that blastospores of certain isolates may be promising candidates to control arthropod pests in regions where heat and UV-B are limiting environmental factors.


Assuntos
Beauveria/fisiologia , Temperatura Alta , Metarhizium/fisiologia , Raios Ultravioleta , Beauveria/crescimento & desenvolvimento , Beauveria/efeitos da radiação , Metarhizium/crescimento & desenvolvimento , Metarhizium/efeitos da radiação , Controle Biológico de Vetores , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos da radiação
7.
Salud Publica Mex ; 62(4): 410-416, 2020.
Artigo em Espanhol | MEDLINE | ID: mdl-32515915

RESUMO

OBJECTIVE: To evaluate the effect of the combination of Metarhizium anisopliae and Gliocladium virens, both with Aqua Reslin Super, on the oviposition, hatching and emergence of Aedes aegypti. MATERIALS AND METHODS: Evaluations were carried out to determine the effect of treatments impregnated on filter paper and exposed within plastic containers on the oviposition, hatching and emergency of Aedes aegypti. RESULTS: The results indicated that the fungus and insecticide combinations did not affect the oviposition behavior, but if the hatching of the eggs and the adult's emergency. CONCLUSIONS: With the results it can be concluded that the combination of fungi + insecticide can be a good option to be applied in oviposition sites with a view to the development of a lethal ovitrap.


OBJETIVO: Evaluar el efecto de la combinación de Metarhizium anisopliae y Gliocladium virens, ambos con Aqua Reslin Super, sobre oviposición, eclosión y emergencia de Aedes aegypti. MATERIAL Y MÉTODOS: Se realizaron evaluaciones para determinar el efecto de los tratamientos impregnados en papel filtro y expuestos dentro de recipientes de plástico sobre la oviposición, eclosión y emergencia de Aedes aegypti. RESULTADOS: Los resultados indicaron que las combinaciones hongo e insecticida no afectaron el comportamiento de oviposición, pero sí la eclosión de los huevos y la emergencia del adulto. CONCLUSIONES: Con los resultados se puede concluir que la combinación de hongos + insecticida puede ser una buena opción para aplicarse en sitios de oviposición con miras al desarrollo de una ovitrampa letal.


Assuntos
Aedes/anatomia & histologia , Hypocrea , Inseticidas , Metarhizium , Oviposição , Butóxido de Piperonila , Piretrinas , Animais , Feminino , Hypocrea/efeitos dos fármacos , Hypocrea/crescimento & desenvolvimento , Metarhizium/efeitos dos fármacos , Metarhizium/crescimento & desenvolvimento , Controle de Mosquitos/métodos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
8.
World J Microbiol Biotechnol ; 36(5): 71, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32350696

RESUMO

The cosmopolitan entomopathogenic and root endophytic fungus Metarhizium robertsii has a versatile lifestyle and during liquid fermentation undergoes a dimorphic transformation from hyphae to conidia or microsclerotia, or from hyphae to blastospores. In all cases, these processes are mediated by environmental and nutritional cues. Blastospores could be used in spray applications to control arthropod pests above ground and may serve as an attractive alternative to the traditional solid-grown aerial conidial spores of Metarhizium spp. found in commercial products. Nitrogen is a vital nutrient in cell metabolism and growth; however, it is the expensive component in liquid cultures of entomopathogenic fungi. Our goals in this study were to optimize nitrogen sources and titers for maximum production of M. robertsii blastospores cultured in shake flasks at highly aerated conditions and to further determine their virulence against the corn leafhopper Dalbulus maidis, an important vector of serious pathogens in maize crops worldwide. Our fermentation studies revealed that the low-cost corn steep liquor (CSL) was the most suitable nitrogen source to improve blastospore growth in M. robertsii. The growth kinetic assays determined the optimal titer of 80 g L-1 and a yield up to 4.7 × 108 cells mL-1 within 5 days of cultivation (3 days preculture and 2 days culture), at a total cost of US$0.30 L-1. Moreover, the blastospore growth kinetic was strongly dependent on glucose and nitrogen consumptions accompanied by a slight drop in the culture pH. Insect bioassays evidenced a high virulence of these blastospores, either as dried or fresh cells, to D. maidis adults fed on maize plants. Our findings provide insights into the nutritional requirements for optimal and cost-efficient production of M. robertsii blastospores and elucidate the potential of blastospores as an ecofriendly tool against the corn leafhopper.


Assuntos
Meios de Cultura/química , Fermentação , Hemípteros/microbiologia , Metarhizium/crescimento & desenvolvimento , Nitrogênio/metabolismo , Controle Biológico de Vetores/métodos , Animais , Esporos Fúngicos/crescimento & desenvolvimento , Virulência , Zea mays/parasitologia
9.
Fungal Biol ; 124(5): 263-272, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389288

RESUMO

Fungi sense light and utilize it as a source of environmental information to prepare against many stressful conditions in nature. In this study, Metarhizium robertsii was grown on: 1) potato dextrose agar medium (PDA) in the dark (control); 2) under nutritive stress in the dark; and 3) PDA under continuous (A) white light; (B) blue light lower irradiance = LI; (C) blue light higher irradiance = HI; (D) green light; and (E) red light. Conidia produced under these treatments were tested against osmotic stress and UV radiation. In addition, a suite of genes usually involved in different stress responses were selected to study their expression patterns. Conidia produced under nutritive stress in the dark were the most tolerant to both osmotic stress and UV radiation, and the majority of their stress- and virulence-related genes were up-regulated. For osmotic stress tolerance, conidia produced under white, blue LI, and blue HI lights were the second most tolerant, followed by conidia produced under green light. Conidia produced under red light were the least tolerant to osmotic stress and less tolerant than conidia produced on PDA medium in the dark. For UV tolerance, conidia produced under blue light LI were the second most tolerant to UV radiation, followed by the UV tolerances of conidia produced under white light. Conidia produced under blue HI, green, and red lights were the least UV tolerant and less tolerant than conidia produced in the dark. The superoxide dismutases (sod1 and sod2), photolyases (6-4phr and CPDphr), trehalose-phosphate synthase (tps), and protease (pr1) genes were highly up-regulated under white light condition, suggesting a potential role of these proteins in stress protection as well as virulence after fungal exposure to visible spectrum components.


Assuntos
Desoxirribodipirimidina Fotoliase , Regulação Fúngica da Expressão Gênica , Luz , Metarhizium , Esporos Fúngicos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Metarhizium/crescimento & desenvolvimento , Metarhizium/efeitos da radiação , Pressão Osmótica , Esporos Fúngicos/efeitos da radiação , Raios Ultravioleta
10.
Fungal Biol ; 122(6): 555-562, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29801800

RESUMO

Light conditions during fungal growth are well known to cause several physiological adaptations in the conidia produced. In this study, conidia of the entomopathogenic fungi Metarhizium robertsii were produced on: 1) potato dextrose agar (PDA) medium in the dark; 2) PDA medium under white light (4.98 W m-2); 3) PDA medium under blue light (4.8 W m-2); 4) PDA medium under red light (2.8 W m-2); and 5) minimum medium (Czapek medium without sucrose) supplemented with 3 % lactose (MML) in the dark. The conidial production, the speed of conidial germination, and the virulence to the insect Tenebrio molitor (Coleoptera: Tenebrionidae) were evaluated. Conidia produced on MML or PDA medium under white or blue light germinated faster than conidia produced on PDA medium in the dark. Conidia produced under red light germinated slower than conidia produced on PDA medium in the dark. Conidia produced on MML were the most virulent, followed by conidia produced on PDA medium under white light. The fungus grown under blue light produced more conidia than the fungus grown in the dark. The quantity of conidia produced for the fungus grown in the dark, under white, and red light was similar. The MML afforded the least conidial production. In conclusion, white light produced conidia that germinated faster and killed the insects faster; in addition, blue light afforded the highest conidial production.


Assuntos
Metarhizium/crescimento & desenvolvimento , Metarhizium/patogenicidade , Tenebrio/microbiologia , Animais , Luz , Metarhizium/efeitos da radiação , Virulência
11.
Fungal Biol ; 122(6): 621-628, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29801807

RESUMO

Survival of entomopathogenic fungi under solar ultraviolet (UV) radiation is paramount to the success of biological control of insect pests and disease vectors. The mutagenic compound 4-nitroquinoline 1-oxide (4-NQO) is often used to mimic the biological effects of UV radiation on organisms. Therefore, we asked whether tolerance to 4-NQO could predict tolerance to UV radiation in thirty isolates of entomopathogenic fungi and one isolate of a xerophilic fungus. A dendrogram obtained from cluster analyses based on the 50 and 90 % inhibitory concentrations (IC50 and IC90, respectively) divided the fungal isolates into six clusters numbered consecutively based on their tolerance to 4-NQO. Cluster 6 contained species with highest tolerance to 4-NQO (IC50 > 4.7 µM), including Mariannaea pruinosa, Lecanicillium aphanocladii, and Torrubiella homopterorum. Cluster 1 contained species least tolerant to 4-NQO (IC50 < 0.2 µM), such as Metarhizium acridum (ARSEF 324), Tolypocladium geodes, and Metarhizium brunneum (ARSEF 7711). With few exceptions, the majority of Metarhizium species showed moderate to low tolerances (IC50 between 0.4 and 0.9 µM) and were placed in cluster 2. Cluster 3 included species with moderate tolerance (IC50 between 1.0 and 1.2 µM). In cluster 4 were species with moderate to high tolerance (IC50 between 1.3 and 1.6 µM). Cluster 5 contained the species with high tolerance (IC50 between 1.9 and 4.0 µM). The most UV tolerant isolate of M. acridum, ARSEF 324, was the least tolerant to 4-NQO. Also, L. aphanocladii, which is very susceptible to UV radiation, showed high tolerance to 4-NQO. Our results indicate that tolerance to 4-NQO does not correlate with tolerance to UV radiation. Therefore this chemical compound is not a predictor of UV tolerance in entomopathogenic fungi.


Assuntos
4-Nitroquinolina-1-Óxido/farmacologia , Entomophthorales/efeitos dos fármacos , Metarhizium/efeitos dos fármacos , Mutagênicos/farmacologia , Tolerância a Radiação , Estresse Fisiológico , Animais , Entomophthorales/crescimento & desenvolvimento , Entomophthorales/efeitos da radiação , Insetos/microbiologia , Metarhizium/crescimento & desenvolvimento , Metarhizium/efeitos da radiação , Controle Biológico de Vetores , Raios Ultravioleta
12.
Parasitol Res ; 116(1): 111-121, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27704216

RESUMO

The current study investigated the thermotolerance of Metarhizium anisopliae s.l. conidia from the commercial products Metarril® SP Organic and Metarril® WP. The efficacy of these M. anisopliae formulations against the tick Rhipicephalus sanguineus s.l. was studied in laboratory under optimum or heat-stress conditions. The products were prepared in water [Tween® 80, 0.01 % (v/v)] or pure mineral oil. Conidia from Metarril® SP Organic suspended in water presented markedly delayed germination after heating to constant 40 °C (for 2, 4, or 6 h) compared to conidia suspended in mineral oil. Metarril® SP Organic suspended in oil and exposed to daily cycles of heat-stress (40 °C for 4 h and 25 °C for 19 h for 5 consecutive days) presented relative germination of conidia ranging from 92.8 to 87.2 % from day 1 to day 5, respectively. Conversely, germination of conidia prepared in water ranged from 79.3 to 39.1 % from day 1 to day 5, respectively. Culturability of Metarril® WP decreased from 96 % when conidia were cultured for 30 min prior to heat exposure (40 °C for 4 h) to 9 % when conidia were cultured for 8 h. Tick percent control was distinctly higher when engorged females were treated with oil suspensions rather than water suspensions, even when treated ticks were exposed to heat-stress regimen. Oil-based applications protected fungal conidia against heat-stress. Although Metarril® is not registered for tick control, it may be useful for controlling R. sanguineus, especially if it is prepared in mineral oil.


Assuntos
Metarhizium/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Rhipicephalus sanguineus/microbiologia , Controle de Ácaros e Carrapatos/métodos , Animais , Feminino , Temperatura Alta , Metarhizium/patogenicidade , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Virulência
13.
J Appl Microbiol ; 121(6): 1710-1717, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27685030

RESUMO

AIMS: Control of diurnal Aedes aegypti with mycoinsecticides should consider the exposure of fungus-treated adults to sunlight, and especially to UV-B radiation that might affect activity of conidia applied on the mosquito's surface. METHODS AND RESULTS: Germination of Metarhizium anisopliae s.l. IP 46 conidia on SDAY medium was not affected at the lowest level of radiation with UV-B, 0·69 kJ m-2 , but was retarded and reduced at higher 2·075 and 4·15 kJ m-2 , and completely inhibited at ≥8·3 kJ m-2 . In contrast, germination of conidia applied onto fibreglass nettings and exposed from 0 to 16·6 kJ m-2 did not differ significantly among levels of irradiance exposure and the controls. There was also no significant impact of UV-B up to 16·6 kJ m-2 on the adulticidal activity of IP 46 and on the subsequent conidiogenesis on cadavers. The Quaite-weighted UV-B irradiance in the laboratory (1152 mW m-2 ) was higher than the natural sunlight irradiance observed in the city of Goiânia in Central Brazil on midday (706 mW m-2 in August to 911 mW m-2 in October 2015). CONCLUSIONS: UV-B does not impair the activity of IP 46 conidia applied previously to radiation on A. aegypti adults. SIGNIFICANCE AND IMPACT OF THE STUDY: Findings contribute to a better understanding of the effectiveness of M. anisopliae against day-active A. aegypti and its potential for biological mosquito control.


Assuntos
Aedes/microbiologia , Agentes de Controle Biológico , Metarhizium/efeitos da radiação , Controle de Mosquitos , Raios Ultravioleta , Animais , Brasil , Feminino , Masculino , Metarhizium/crescimento & desenvolvimento , Metarhizium/patogenicidade , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos da radiação , Virulência/efeitos da radiação
14.
Methods Mol Biol ; 1477: 61-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27565492

RESUMO

This chapter describes the production of conidia by Metarhizium anisopliae using solid-state fermentation. Before production of conidia, procedures for strains conservation, reactivation, and propagation are essential in order to provide genetic stability of the strains. The strain is conserved in freeze-dried vials and then reactivated through insect inoculation. Rice is used as a substrate for the conidia production in two different bioreactors: plastic bags and tubular bioreactor. The CO2 production in the tubular bioreactors is measured with a respirometer; this system allows calculating indirect growth parameters as lag time (tlag) (25-35 h), maximum rate of CO2 production (rCO2 max) (0.5-0.7 mg/gdm h), specific rate of CO2 production (µ) (0.10-0.15 1/h), and final CO2 production (CO2) (100-120 mg/gdm). Conidial yield per gram of dry substrate (gdm) should be above 1 × 10(9) conidia/gdm after 10 days of incubation. Germination and viability of conidia obtained after 10 days of incubation should be above 80 % and 75 %, respectively. Bioassays using of Tenebrio molitor as a host insect should yield a final mortality above 80 %.


Assuntos
Agentes de Controle Biológico , Fermentação , Metarhizium/crescimento & desenvolvimento , Esporos Fúngicos , Reatores Biológicos , Meios de Cultura
15.
Parasitol Res ; 115(1): 143-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26364059

RESUMO

Conidia of the entomopathogenic fungus Metarhizium anisopliae (Ascomycota: Clavicipitaceae) were assessed against Rhipicephalus sanguineus (Arachnida: Ixodidae) eggs under laboratory conditions. Clusters of 25 eggs were applied either directly with the fungal conidial formulations or set on previously fungus-treated filter paper. Treatments consisted of conidia formulated in water or an oil-in-water emulsion at final concentrations of 3.3 × 10(3), 10(4), 3.3 × 10(4), 10(5), or 3.3 × 10(5) conidia/cm(2). The development of mycelium and new conidia on egg clusters incubated at 25 °C and humidity close to saturation depended on conidial concentration, formulation, and application technique. No larvae eclosed from eggs after direct applications of conidia regardless of the formulation. The eclosion and survival of larvae from indirectly treated egg clusters depended on the type of formulation and conidial concentration applied. Oil-in-water formulations of conidia demonstrated the highest activity against eggs of R. sanguineus.


Assuntos
Metarhizium/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Rhipicephalus sanguineus/microbiologia , Animais , Umidade , Larva/microbiologia , Micélio/crescimento & desenvolvimento , Óvulo/microbiologia , Controle Biológico de Vetores/normas , Esporos Fúngicos/crescimento & desenvolvimento , Água
16.
Curr Microbiol ; 72(2): 220-227, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26597214

RESUMO

The entomopathogenic fungus Metarhizium anisopliae is used to control insect pests. This species is specialized for the secretion of an enzymatic complex consisting of proteases, lipases, and chitinases related to pathogenicity and virulence. In this context, the secretomes of strains IBCB 167 and IBCB 384 of M. anisopliae var. anisopliae, grown under submerged fermentation in the presence of chrysalis as an inducer, were analyzed. Analysis of two-dimensional gels showed qualitative and quantitative differences between secreted proteins in both isolates. Around 102 protein spots were analyzed, and 76 % of the corresponding proteins identified by mass spectrometry were grouped into different classes (hydrolases, oxidases, reductases, isomerases, kinases, WSC domains, and hypothetical proteins). Thirty-three per cent of all the proteins analyzed were found to be common in both strains. Several virulence-related proteins were identified as proteases and mannosidases. Endo-N-acetyl-ß-D-glucosaminidase expression was observed to be 10.14-fold higher for strain IBCB 384 than for strain IBCB 167, which may be an important contributor to the high virulence of IBCB 384 in Diatraea ssaccharalis. These results are important for elucidation of the host-pathogen relationship and the differences in virulence observed between the two strains.


Assuntos
Bombyx/química , Proteínas Fúngicas/metabolismo , Metarhizium/efeitos dos fármacos , Metarhizium/metabolismo , Proteoma/análise , Fatores de Virulência/análise , Animais , Eletroforese em Gel Bidimensional , Enzimas/metabolismo , Fermentação , Espectrometria de Massas , Metarhizium/crescimento & desenvolvimento
17.
Parasit Vectors ; 8: 669, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26715150

RESUMO

BACKGROUND: Entomopathogenic fungi are potential candidates for use in integrated vector management and many isolates are compatible with synthetic and natural insecticides. Neem oil was tested separately and in combination with the entomopathogenic fungus Metarhizium anisopliae against larvae of the dengue vector Aedes aegypti. Our aim was to increase the effectiveness of the fungus for the control of larval mosquito populations. METHODS: Commercially available neem oil was used at concentrations ranging from 0.0001 to 1%. Larval survival rates were monitored over a 7 day period following exposure to neem. The virulence of the fungus M. anisopliae was confirmed using five conidial concentrations (1 × 10(5) to 1 × 10(9) conidia mL(-1)) and survival monitored over 7 days. Two concentrations of fungal conidia were then tested together with neem (0.001%). Survival curve comparisons were carried out using the Log-rank test and end-point survival rates were compared using one-way ANOVA. RESULTS: 1% neem was toxic to A. aegypti larvae reducing survival to 18% with S50 of 2 days. Neem had no effect on conidial germination or fungal vegetative growth in vitro. Larval survival rates were reduced to 24% (S50 = 3 days) when using 1 × 10(9) conidia mL(-1). Using 1 × 10(8) conidia mL(-1), 30% survival (S50 = 3 days) was observed. We tested a "sub-lethal" neem concentration (0.001%) together with these concentrations of conidia. For combinations of neem + fungus, the survival rates were significantly lower than the survival rates seen for fungus alone or for neem alone. Using a combination of 1 × 10(7) conidia mL(-1) + neem (0.001%), the survival rates were 36%, whereas exposure to the fungus alone resulted in 74% survival and exposure to neem alone resulted in 78% survival. When using 1 × 10(8) conidia mL(-1), the survival curves were modified, with a combination of the fungus + neem resulting in 12% survival, whilst the fungus alone at this concentration also significantly reduced survival rates (28%). CONCLUSIONS: The use of adjuvants is an important strategy for maintaining/increasing fungal virulence and/or shelf-life. The addition of neem to conidial suspensions improved virulence, significantly reducing larval survival times and percentages.


Assuntos
Aedes/efeitos dos fármacos , Aedes/microbiologia , Glicerídeos/farmacologia , Inseticidas/farmacologia , Metarhizium/crescimento & desenvolvimento , Controle de Mosquitos/métodos , Terpenos/farmacologia , Aedes/fisiologia , Animais , Bioensaio , Larva/efeitos dos fármacos , Larva/microbiologia , Larva/fisiologia , Metarhizium/efeitos dos fármacos , Metarhizium/fisiologia , Análise de Sobrevida , Virulência/efeitos dos fármacos
18.
Int Microbiol ; 18(2): 91-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26496616

RESUMO

Entomopathogenic fungi are potential tools to biocontrol cicadellids and delphacids, two groups of insects that cause extensive damage to agricultural crops. However, bacteria living on the host cuticle may inhibit fungal growth. In the present work, following the molecular characterization of 10 strains of Bacillus isolated from the integument of cicadellids and delphacids, we selected isolates of the fungi Beauveria bassiana and Metarhizium anisopliae that are resistant to the antimicrobials secreted by these bacterial strains. The antagonistic activity of the 10 bacterial isolates belonging to the genus Bacillus (i.e., B. amyloliquefaciens, B. pumilus, and B. subtilis) against 41 isolates of Bea. bassiana and 20 isolates of M. anisopliae was investigated in vitro on tryptic soy agar using the central disk test. With this approach, isolates of Bea. bassiana and M. anisopliae resistant to antagonistic bacteria were identified that can be further developed as biological control agents.


Assuntos
Estruturas Animais/microbiologia , Antibiose , Bacillus/fisiologia , Beauveria/crescimento & desenvolvimento , Beauveria/fisiologia , Hemípteros/microbiologia , Metarhizium/crescimento & desenvolvimento , Animais , Bacillus/genética , Bacillus/isolamento & purificação , Metarhizium/fisiologia , Filogenia
19.
Appl Microbiol Biotechnol ; 99(6): 2783-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25472433

RESUMO

Mycoinsecticides application within Integral Pest Management requires high quantities of conidia, with the proper quality and resistance against environmental conditions. Metarhizium anisopliae var. lepidiotum conidia were produced in normal atmospheric conditions (21 % O2) and different concentrations of oxygen pulses (16, 26, 30, and 40 %); conidia obtained under hypoxic conditions showed significantly lower viability, hydrophobicity, and virulence against Tenebrio molitor larvae or mealworm, compared with those obtained under normal atmospheric conditions. Higher concentrations of oxygen (26 and 30 %) improved conidial production. However, when a 30 % oxygen concentration was applied, maximal conidial yields were obtained at earlier times (132 h) relative to 26 % oxygen pulses (156 h); additionally, with 30 % oxygen pulses, conidia thermotolerance was improved, maintaining viability, hydrophobicity, and virulence. Although conidial production was not affected when 40 % oxygen pulses were applied, viability and virulence were diminished in those conidia. In order to find a critical time for mycelia competence to respond to these oxidant conditions, oxygen pulses were first applied either at 36, 48, 60, and 72 h. A critical time of 60 h was determined to be the best time for the M. anisopliae var. lepidiotum mycelia to respond to oxygen pulses in order to increase conidial production and also to maintain the quality features. Therefore, oxygen-enriched (30 %) pulses starting at 60 h are recommended for a high production without the impairment of quality of M. anisopliae var. lepidiotum conidia.


Assuntos
Metarhizium/crescimento & desenvolvimento , Micélio/metabolismo , Oxigênio/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Animais , Bioensaio , Interações Hidrofóbicas e Hidrofílicas , Metarhizium/patogenicidade , Controle Biológico de Vetores , Tenebrio/microbiologia , Virulência
20.
World J Microbiol Biotechnol ; 30(5): 1583-90, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24343780

RESUMO

We investigated the potential production and desiccation tolerance of microsclerotia (MS) by Brazilian strains of Metarhizium anisopliae (Ma), M. acridum (Mc) and M. robertsii (Mr). These fungi were grown in a liquid medium containing 16 g carbon l⁻¹ with a carbon:nitrogen ratio of 50:1. One hundred milliliters cultures were grown in 250 ml Erlenmeyer flasks in a rotary incubator shaker at 28 °C and 200 rpm for 5 days. Five-day-old MS were harvested, mixed with diatomaceous earth (DE) and air-dried for 2 days at 30 °C. The air-dried MS-DE granular preparations were milled by mortar + pestle and stored in centrifuged tubes at either 26 or -20 °C. Desiccation tolerance and conidia production were assessed for dried MS granules by measuring hyphal germination after incubation for 2 days on water agar plates at 26 °C and for conidia production following 7 days incubation. Yields of MS by all strains of Metarhizium were 6.1-7.3 × 106 l⁻¹ after 3 days growth with maximum MS yields (0.7-1.1 × 107 l⁻¹) after 5 days growth. No differences in biomass accumulation were observed after 3 days growth, whereas Ma-CG168 showed the highest biomass accumulation after 5 days growth. Dried MS-DE preparations of all fungal strains were equally tolerant to desiccation (≥93 % germination) and the highest conidia production was obtained by MS granules of Mc-CG423 (4 × 109 conidia g⁻¹). All MS granules showed similar stability after storage at either 26 or -20 °C for 3.5 months.


Assuntos
Meios de Cultura/metabolismo , Fermentação , Metarhizium/crescimento & desenvolvimento , Biomassa , Brasil , Carbono/metabolismo , Dessecação , Hifas/crescimento & desenvolvimento , Metarhizium/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA