Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.198
Filtrar
1.
BMC Med ; 22(1): 400, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294656

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC), known for its aggressiveness and limited treatment options, presents a significant challenge. Adoptive cell transfer, involving the ex vivo generation of antigen-specific T cells from peripheral blood mononuclear cells (PBMCs), emerges as a promising approach. The overexpression of mesothelin (MSLN) and nucleolin (NCL) in TNBC samples underscores their potential as targets for T cell therapy. This study explored the efficacy of multi-peptide pulsing of PBMCs to generate MSLN/NCL-specific T cells targeting MSLN+/NCL+ TNBC cells. METHODS: TNBC patient samples were confirmed for both MSLN and NCL expression via immunohistochemistry. Synthesized MSLN and NCL peptides were combined and administered to activate PBMCs from healthy donors. The cancer-killing ability of the resultant T cells was assessed using crystal violet staining, and their subtypes and cytotoxic cytokines were characterized through flow cytometry and cytokine bead array. RESULTS: Findings showed that 85.3% (127/149) of TNBC cases were positive for either MSLN or NCL, or both; with single positivity rates for MSLN and NCL of 14.1% and 28.9%, respectively. MSLN and NCL peptides, with high binding affinity for HLA-A*02, were combined and introduced to activated PBMCs from healthy donors. The co-pulsed PBMCs significantly induced TEM and TEMRA CD3+/CD8+ T cells and IFN-γ production, compared to single-peptide pulsed or unpulsed conditions. Notably, MSLN/NCL-specific T cells successfully induced cell death in MSLN+/NCL+ MDA-MB-231 cells, releasing key cytotoxic factors such as perforin, granzymes A and B, Fas ligand, IFN-γ, and granulysin. CONCLUSIONS: These findings serve as a proof-of-concept for using multiple immunogenic peptides as a novel therapeutic approach in TNBC patients.


Assuntos
Proteínas Ligadas por GPI , Mesotelina , Nucleolina , Fosfoproteínas , Proteínas de Ligação a RNA , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/imunologia , Proteínas de Ligação a RNA/imunologia , Feminino , Peptídeos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Pessoa de Meia-Idade , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Imunoterapia Adotiva/métodos , Adulto , Citocinas/metabolismo
2.
Lung Cancer ; 195: 107928, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39197359

RESUMO

PURPOSE: The mesothelin-targeting antibody-drug conjugate anetumab ravtansine was evaluated in combination with the programmed cell death-1 (PD-1) inhibitor pembrolizumab based on the common expression of mesothelin and reports of activity in mesothelioma. PATIENTS AND METHODS: A phase 1 safety run-in of the combination of anetumab ravtansine (6.5 mg/kg iv q3weeks) and pembrolizumab (200 mg, IV q3weeks) was conducted, followed by a phase 2 randomization to the combination or pembrolizumab alone at medical centers across the United States and Canada in the National Cancer Institute's Experimental Therapeutics Clinical Trials Network. Patients with pleural mesothelioma that expressed mesothelin and had previously received platinum-based therapy were eligible. RESULTS: In phase 1 (n = 12) only one dose limiting toxicity was observed and the rules for dose reduction were not met. In phase 2, there was no difference in the confirmed response rates between the combination group (n = 18, 2 partial responses [PR], 11 %) and the pembrolizumab group (n = 17, 1 PR, 6 %; z = -0.5523, p = 0.29116). The median PFS was 12.2 months (95 % CI 5.1-not evaluable [NE]) for the combination, and 3.9 months for pembrolizumab (95 % CI 2.1-NE)(HR=0.55, p = 0.20). Patients with high baseline levels of soluble mesothelin who received anetumab ravtansine had a median PFS of 5 months. CONCLUSIONS: The numeric difference in PFS between treatment groups was not statistically significant, likely related to a smaller than planned sample size. High levels of soluble mesothelin should potentially be considered to select against the use of mesothelin-targeting therapies in development that are neutralized by soluble mesothelin.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Protocolos de Quimioterapia Combinada Antineoplásica , Mesotelioma , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Feminino , Idoso , Masculino , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/efeitos adversos , Mesotelioma/tratamento farmacológico , Mesotelioma/mortalidade , Mesotelioma/patologia , Mesotelina , Maitansina/análogos & derivados , Maitansina/uso terapêutico , Maitansina/efeitos adversos , Idoso de 80 Anos ou mais , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/patologia , Neoplasias Pleurais/mortalidade , Proteínas Ligadas por GPI/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Imunoconjugados
3.
JCI Insight ; 9(18)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106104

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is highly lethal and resistant to immunotherapy. Although immune recognition can be enhanced with immunomodulatory agents including checkpoint inhibitors and vaccines, few patients experience clinical efficacy because the tumor immune microenvironment (TiME) is dominated by immunosuppressive myeloid cells that impose T cell inhibition. Inhibition of phosphodiesterase-5 (PDE5) was reported to downregulate metabolic regulators arginase and inducible NOS in immunosuppressive myeloid cells and enhance immunity against immune-sensitive tumors, including head and neck cancers. We show for the first time to our knowledge that combining a PDE5 inhibitor, tadalafil, with a mesothelin-specific vaccine, anti-programmed cell death protein 1, and anti-cytotoxic T lymphocyte-associated protein 4 yields antitumor efficacy even against immune-resistant PDAC. To determine immunologic advantages conferred by tadalafil, we profiled the TiME using mass cytometry and single-cell RNA-sequencing analysis with Domino to infer intercellular signaling. Our analyses demonstrated that tadalafil reprograms myeloid cells to be less immunosuppressive. Moreover, tadalafil synergized with the vaccine, enhancing T cell activation including mesothelin-specific T cells. Tadalafil treatment was also associated with myeloid/T cell signaling axes important for antitumor responses (e.g., Cxcr3, Il12). Our study shows that PDE5 inhibition combined with vaccine-based immunotherapy promotes pro-inflammatory states of myeloid cells, activation of T cells, and enhanced myeloid/T cell crosstalk to yield antitumor efficacy against immune-resistant PDAC.


Assuntos
Vacinas Anticâncer , Carcinoma Ductal Pancreático , Imunoterapia , Células Mieloides , Neoplasias Pancreáticas , Inibidores da Fosfodiesterase 5 , Tadalafila , Microambiente Tumoral , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Células Mieloides/imunologia , Células Mieloides/efeitos dos fármacos , Tadalafila/farmacologia , Tadalafila/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/farmacologia , Humanos , Camundongos , Imunoterapia/métodos , Animais , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral , Mesotelina
4.
Pathol Res Pract ; 262: 155562, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182448

RESUMO

Mesothelin (MSLN) is expressed in the mesothelium in normal tissues but is overexpressed in various malignant tumors. In this study, we searched for genes that were more frequently expressed in cases of endometrioid carcinoma (EC) with the MELF (microcystic, elongated, and fragmented) pattern using laser microdissection and RNA sequencing, and found that MSLN was predominantly expressed in cases with the MELF pattern. The role of MSLN in EC was analyzed by generating MSLN-knockout and -knockdown EC cell lines. MSLN promoted migration and epithelial-mesenchymal transition (EMT). Moreover, we found that cadherin-6 (CDH6) expression was regulated by MSLN. MSLN is known to bind to cancer antigen 125 (CA125), and we found that CA125 can regulate CDH6 expression via MSLN. Immunohistochemical investigations showed that MSLN, CA125, and CDH6 expression levels were considerably elevated in EC with the MELF pattern. The expression of CA125 was similar to that of MSLN not only in terms of immunohistochemical staining intensity but also the blood level of CA125. Our results showed that MSLN contributes to the migration and EMT of EC cells through upstream CA125 and downstream CDH6. Therefore, MSLN has potential as a therapeutic target for EC with the MELF pattern.


Assuntos
Caderinas , Carcinoma Endometrioide , Movimento Celular , Transição Epitelial-Mesenquimal , Proteínas Ligadas por GPI , Mesotelina , Humanos , Feminino , Proteínas Ligadas por GPI/metabolismo , Carcinoma Endometrioide/patologia , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/genética , Transição Epitelial-Mesenquimal/fisiologia , Caderinas/metabolismo , Antígeno Ca-125/metabolismo , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/genética , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Proteínas de Membrana
5.
Proc Natl Acad Sci U S A ; 121(31): e2403002121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047033

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents a challenge in oncology, with limited treatment options for advanced-stage patients. Chimeric antigen receptor T cell (CAR T) therapy targeting mesothelin (MSLN) shows promise, but challenges such as the hostile immunosuppressive tumor microenvironment (TME) hinder its efficacy. This study explores the synergistic potential of combining proton radiation therapy (RT) with MSLN-targeting CAR T therapy in a syngeneic PDAC model. Proton RT significantly increased MSLN expression in tumor cells and caused a significant increase in CAR T cell infiltration into tumors. The combination therapy reshaped the immunosuppressive TME, promoting antitumorigenic M1 polarized macrophages and reducing myeloid-derived suppressor cells (MDSC). In a flank PDAC model, the combination therapy demonstrated superior attenuation of tumor growth and improved survival compared to individual treatments alone. In an orthotopic PDAC model treated with image-guided proton RT, tumor growth was significantly reduced in the combination group compared to the RT treatment alone. Further, the combination therapy induced an abscopal effect in a dual-flank tumor model, with increased serum interferon-γ levels and enhanced proliferation of extratumoral CAR T cells. In conclusion, combining proton RT with MSLN-targeting CAR T therapy proves effective in modulating the TME, enhancing CAR T cell trafficking, and exerting systemic antitumor effects. Thus, this combinatorial approach could present a promising strategy for improving outcomes in unresectable PDAC.


Assuntos
Carcinoma Ductal Pancreático , Proteínas Ligadas por GPI , Imunoterapia Adotiva , Mesotelina , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Animais , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/patologia , Camundongos , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Microambiente Tumoral/imunologia , Humanos , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/radioterapia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Terapia com Prótons/métodos , Terapia Combinada , Linfócitos T/imunologia , Feminino
6.
Cancer Immunol Immunother ; 73(9): 163, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954005

RESUMO

In addition to their immunosuppressive effect, cytostatics conditioning prior to adoptive therapy such as chimeric antigen receptor (CAR) T cells may play a role in debulking and remodeling the tumor microenvironment. We investigated in vitro the killing efficacy and impact of treosulfan and fludarabine on ovarian cancer cells expressing mesothelin (MSLN) and effect on MSLN-targeting CAR T cells. Treosulfan and fludarabine had a synergetic effect on killing of SKOV3 and OVCAR4 cells. Sensitivity to the combination of treosulfan and fludarabine was increased when SKOV3 cells expressed MSLN and when OVCAR4 cells were tested in hypoxia, while MSLN cells surface expression by SKOV3 and OVCAR4 cells was not altered after treosulfan or fludarabine exposure. Exposure to treosulfan or fludarabine (10 µM) neither impacted MSLN-CAR T cells degranulation, cytokines production upon challenge with MSLN + OVCAR3 cells, nor induced mitochondrial defects. Combination of treosulfan and fludarabine decreased MSLN-CAR T cells anti-tumor killing in normoxia but not hypoxia. In conclusion, treosulfan and fludarabine killed MSLN + ovarian cancer cells without altering MSLN-CAR T cells functions (at low cytostatics concentration) even in hypoxic conditions, and our data support the use of treosulfan and fludarabine as conditioning drugs prior to MSLN-CAR T cell therapy.


Assuntos
Bussulfano , Proteínas Ligadas por GPI , Imunoterapia Adotiva , Mesotelina , Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Vidarabina , Vidarabina/análogos & derivados , Vidarabina/farmacologia , Humanos , Feminino , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/terapia , Receptores de Antígenos Quiméricos/imunologia , Bussulfano/análogos & derivados , Bussulfano/farmacologia , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
Sci Adv ; 10(28): eadn0881, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996027

RESUMO

Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.


Assuntos
Células Matadoras Naturais , Mesotelina , Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Feminino , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Imunoterapia Adotiva/métodos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/terapia , Memória Imunológica , Domínios Proteicos
8.
J Immunother Cancer ; 12(7)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043602

RESUMO

BACKGROUND: Chimeric antigen receptor T-cell (CAR-T) therapy has achieved remarkable remission in patients with B-cell malignancies. However, its efficacy in treating solid tumors remains limited. Here, we investigated a combination therapy approach using an engineered long-acting interleukin (IL)-7 (rhIL-7-hyFc or NT-I7) and CAR-T cells targeting three antigens, glypican-2 (GPC2), glypican-3 (GPC3), and mesothelin (MSLN), against multiple solid tumor types including liver cancer, neuroblastoma, ovarian cancer, and pancreatic cancer in mice. METHODS: CAR-T cells targeting GPC2, GPC3, and MSLN were used in combination with NT-I7 to assess the anticancer activity. Xenograft tumor models, including the liver cancer orthotopic model, were established using NOD scid gamma mice engrafted with cell lines derived from hepatocellular carcinoma, neuroblastoma, ovarian cancer, and pancreatic cancer. The mice were monitored by bioluminescence in vivo tumor imaging and tumor volume measurement using a caliper. Immunophenotyping of CAR-T cells on NT-I7 stimulation was evaluated for memory markers, exhaust markers, and T-cell signaling molecules by flow cytometry and western blotting. RESULTS: Compared with the IL-2 combination, preclinical evaluation of NT-I7 exhibited regression of solid tumors via enhanced occupancy of CD4+ CAR-T, improved T-cell expansion, reduced exhaustion markers (programmed cell death protein 1 or PD-1 and lymphocyte-activation gene 3 or LAG-3) expression, and increased generation of stem cell-like memory CAR-T cells. The STAT5 pathway was demonstrated to be downstream of NT-I7 signaling, mediated by increased expression of the IL-7 receptor expression in CAR-T cells. Furthermore, CAR-T cells improved efficacy against tumors with low antigen density when combined with NT-I7 in mice, presenting an avenue for patients with heterogeneous antigenic profiles. CONCLUSION: This study provides a rationale for NT-I7 plus CAR-T cell combination therapy for solid tumors in humans.


Assuntos
Imunoterapia Adotiva , Interleucina-7 , Animais , Humanos , Camundongos , Imunoterapia Adotiva/métodos , Feminino , Neoplasias/terapia , Neoplasias/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/imunologia , Camundongos SCID , Camundongos Endogâmicos NOD , Mesotelina
9.
Acta Pharmacol Sin ; 45(10): 2186-2198, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38858494

RESUMO

T cell engaging bispecific antibodies (TCBs) have recently become significant in cancer treatment. In this study we developed MSLN490, a novel TCB designed to target mesothelin (MSLN), a glycosylphosphatidylinositol (GPI)-linked glycoprotein highly expressed in various cancers, and evaluated its efficacy against solid tumors. CDR walking and phage display techniques were used to improve affinity of the parental antibody M912, resulting in a pool of antibodies with different affinities to MSLN. From this pool, various bispecific antibodies (BsAbs) were assembled. Notably, MSLN490 with its IgG-[L]-scFv structure displayed remarkable anti-tumor activity against MSLN-expressing tumors (EC50: 0.16 pM in HT-29-hMSLN cells). Furthermore, MSLN490 remained effective even in the presence of non-membrane-anchored MSLN (soluble MSLN). Moreover, the anti-tumor activity of MSLN490 was enhanced when combined with either Atezolizumab or TAA × CD28 BsAbs. Notably, a synergistic effect was observed between MSLN490 and paclitaxel, as paclitaxel disrupted the immunosuppressive microenvironment within solid tumors, enhancing immune cells infiltration and improved anti-tumor efficacy. Overall, MSLN490 exhibits robust anti-tumor activity, resilience to soluble MSLN interference, and enhanced anti-tumor effects when combined with other therapies, offering a promising future for the treatment of a variety of solid tumors. This study provides a strong foundation for further exploration of MSLN490's clinical potential.


Assuntos
Proteínas Ligadas por GPI , Mesotelina , Humanos , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/farmacologia , Paclitaxel/uso terapêutico , Paclitaxel/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Camundongos , Feminino , Células HT29 , Camundongos Endogâmicos BALB C , Camundongos Nus , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
11.
Toxicol In Vitro ; 99: 105876, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876226

RESUMO

Fangchinoline (FA) is an alkaloid derived from the traditional Chinese medicine Fangji. Numerous studies have shown that FA has a toxic effect on various cancer cells, but little is known about its toxic effects on germ cells, especially oocytes. In this study, we investigated the effects of FA on mouse oocyte maturation and its potential mechanisms. Our results showed that FA did not affect meiosis resumption but inhibited the first polar body extrusion. This inhibition is not due to abnormalities at the organelle level, such as chromosomes and mitochondrial, which was proved by detection of DNA damage and reactive oxygen species. Further studies revealed that FA arrested the oocyte at the metaphase I stage, and this arrest was not caused by abnormal kinetochore-microtubule attachment or spindle assembly checkpoint activation. Instead, FA inhibits the activity of anaphase-promoting complexes (APC/C), as evidenced by the inhibition of CCNB1 degeneration. The decreased activity of APC/C may be due to a reduction in CDC25B activity as indicated by the high phosphorylation level of CDC25B (Ser323). This may further enhance Maturation-Promoting Factor (MPF) activity, which plays a critical role in meiosis. In conclusion, our study suggests that the metaphase I arrest caused by FA may be due to abnormalities in MPF and APC/C activity.


Assuntos
Benzilisoquinolinas , Fator Promotor de Maturação , Meiose , Mesotelina , Oócitos , Animais , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Feminino , Benzilisoquinolinas/farmacologia , Fator Promotor de Maturação/metabolismo , Camundongos , Fosfatases cdc25/metabolismo , Fosfatases cdc25/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Camundongos Endogâmicos ICR , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA/efeitos dos fármacos , Ciclina B1/metabolismo , Ciclina B1/genética
12.
Front Immunol ; 15: 1362904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855110

RESUMO

Introduction: Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of hematological malignancies. However, its efficacy in solid tumors is limited by the immunosuppressive tumor microenvironment that compromises CAR T cell antitumor function in clinical settings. To overcome this challenge, researchers have investigated the potential of inhibiting specific immune checkpoint receptors, including A2aR (Adenosine A2 Receptor) and Tim3 (T cell immunoglobulin and mucin domain-containing protein 3), to enhance CAR T cell function. In this study, we evaluated the impact of genetic targeting of Tim3 and A2a receptors on the antitumor function of human mesothelin-specific CAR T cells (MSLN-CAR) in vitro and in vivo. Methods: Second-generation anti-mesothelin CAR T cells were produced using standard cellular and molecular techniques. A2aR-knockdown and/or Tim3- knockdown anti-mesothelin-CAR T cells were generated using shRNA-mediated gene silencing. The antitumor function of CAR T cells was evaluated by measuring cytokine production, proliferation, and cytotoxicity in vitro through coculture with cervical cancer cells (HeLa cell line). To evaluate in vivo antitumor efficacy of manufactured CAR T cells, tumor growth and mouse survival were monitored in a human cervical cancer xenograft model. Results: In vitro experiments demonstrated that knockdown of A2aR alone or in combination with Tim3 significantly improved CAR T cell proliferation, cytokine production, and cytotoxicity in presence of tumor cells in an antigen-specific manner. Furthermore, in the humanized xenograft model, both double knockdown CAR T cells and control CAR T cells could effectively control tumor growth. However, single knockdown CAR T cells were associated with reduced survival in mice. Conclusion: These findings highlight the potential of concomitant genetic targeting of Tim3 and A2a receptors to augment the efficacy of CAR T cell therapy in solid tumors. Nevertheless, caution should be exercised in light of our observation of decreased survival in mice treated with single knockdown MSLN-CAR T cells, emphasizing the need for careful efficacy considerations.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Imunoterapia Adotiva , Mesotelina , Receptores de Antígenos Quiméricos , Neoplasias do Colo do Útero , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Feminino , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/genética , Camundongos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Camundongos SCID
13.
Structure ; 32(8): 1049-1054.e2, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38703776

RESUMO

Mesothelin (MSLN) is a cell-surface glycoprotein expressed at low levels on normal mesothelium but overexpressed in many cancers. Mesothelin has been implicated to play role/s in cell adhesion and multiple signaling pathways. Mucin-16/CA125 is an enormous cell-surface glycoprotein, also normally expressed on mesothelium and implicated in the progression and metastasis of several cancers, and directly binds mesothelin. However, the precise biological function/s of mesothelin and mucin-16/CA125 remain mysterious. We report protein engineering and recombinant production, qualitative and quantitative binding studies, and a crystal structure determination elucidating the molecular-level details governing recognition of mesothelin by mucin-16/CA125. The interface is small, consistent with the ∼micromolar binding constant and is free of glycan-mediated interactions. Sequence comparisons and modeling suggest that multiple mucin-16/CA125 modules can interact with mesothelin through comparable interactions, potentially generating a high degree of avidity at the cell surface to overcome the weak affinity, with implications for functioning and therapeutic interventions.


Assuntos
Antígeno Ca-125 , Proteínas Ligadas por GPI , Mesotelina , Modelos Moleculares , Ligação Proteica , Mesotelina/metabolismo , Humanos , Antígeno Ca-125/metabolismo , Antígeno Ca-125/química , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Cristalografia por Raios X , Sítios de Ligação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sequência de Aminoácidos , Engenharia de Proteínas , Proteínas de Membrana
15.
Analyst ; 149(12): 3309-3316, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38699925

RESUMO

An electrochemical microsensor for mesothelin (MSLN) based on an acupuncture needle (AN) was constructed in this work. To prepare the microsensor, MSLN was self-assembled on 4-mercaptophenylboronic acid (4-MPBA) by an interaction force between the external cis-diol and phenylboronic acid. This was followed by the gradual electropolymerization of thionine (TH) and eriochrome black T (EBT) around the anchored protein. The thickness of the surface imprinted layers influenced the sensing performance and needed to be smaller than the height of the anchored protein. The polymerized EBT was not electrically active, but the polymerized TH provided a significant electrochemical signal. Therefore, electron transfer smoothly proceeded through the eluted nanocavities. The imprinted nanocavities were highly selective toward MSLN, and the rebinding of insulating proteins reduced the electrochemical signal of the embedded pTH. The functionalized interface was characterized by SEM and electrochemical methods, and the preparation conditions were studied. After optimization, the sensor showed a linear response in the range of 0.1 to 1000 ng mL-1 with a detection limit of 10 pg mL-1, indicating good performance compared with other reported methods. This microsensor also showed high sensitivity and stability, which can be attributed to the fine complementation of the imprinted organic nanocavities. The sensitivity of this sensor was related to the nanocavities used for electron transport around the AuNPs. In the future, microsensors that can directly provide electrochemical signals are expected to play important roles especially on AN matrices.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Mesotelina , Fenotiazinas , Fenotiazinas/química , Humanos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Polímeros Molecularmente Impressos/química , Agulhas , Ouro/química , Proteínas Ligadas por GPI/análise
16.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728394

RESUMO

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Assuntos
Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Antígenos HLA-E , Animais , Humanos , Masculino , Fosfatase Ácida , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Citomegalovirus/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Macaca mulatta , Mesotelina
17.
J Transl Med ; 22(1): 367, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637885

RESUMO

BACKGROUND: Ovarian cancer (OC) is characterized by its rapid growth and spread which, accompanied by a low 5-year survival rate, necessitates the development of improved treatments. In ovarian cancer, the selective overexpression of Mucin-16 (MUC16, CA125) in tumor cells highlights its potential as a promising target for developing anti-tumor therapies. However, the potential effectiveness of CAR-T cell therapy that targets MUC16 in ovarian cancer cells is unknown. METHODS: The expression of MUC16 in viable OC cells was detected using immunofluorescence and flow cytometry techniques. A MSLN-CAR construct, comprising the MUC16-binding polypeptide region of mesothelin (MSLN), a CD8 hinge spacer and transmembrane domain, 4-1BB, and CD3ζ endo-domains; was synthesized and introduced into T cells using lentiviral particles. The cytotoxicity of the resultant CAR-T cells was evaluated in vitro using luciferase assays. Cytokine release by CAR-T cells was measured using enzyme-linked immunosorbent assays. The anti-tumor efficacy of the CAR-T cells was subsequently assessed in mice through both systemic and local administration protocols. RESULTS: MSLN-CAR T cells exhibited potent cytotoxicity towards OVCAR3 cells and their stem-like cells that express high levels of MUC16. Also, MSLN-CAR T cells were inefficient at killing SKOV3 cells that express low levels of MUC16, but were potently cytotoxic to such cells overexpressing MUC16. Moreover, MSLN-CAR T cells delivered via tail vein or peritoneal injection could shrink OVCAR3 xenograft tumors in vivo, with sustained remission observed following peritoneal delivery of MSLN-CAR T cells. CONCLUSIONS: Collectively, these results suggested that MSLN-CAR T cells could potently eliminate MUC16- positive ovarian cancer tumor cells both in vitro and in vivo, thereby providing a promising therapeutic intervention for MUC16-positive patients.


Assuntos
Mesotelina , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Thorac Cancer ; 15(15): 1237-1245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627917

RESUMO

BACKGROUND: Tumor recurrence remains the main barrier to survival after surgery for pleural mesothelioma (PM). Soluble mesothelin-related protein (SMRP) and cancer antigen 125 (CA-125) are established blood-based biomarkers for monitoring PM. We prospectively studied the utility of these biomarkers after pleurectomy decortication (PD). METHODS: Patients who underwent PD and achieved complete macroscopic resection with available preoperative SMRP levels were included. Tumor marker levels were determined within 60 days of three timepoints: (1) preoperation, (2) post-operation, and (3) recurrence. RESULTS: Of 356 evaluable patients, 276 (78%) had recurrence by the end of follow-up interval. Elevated preoperative SMRP levels were associated with epithelioid histology (p < 0.013), advanced TNM (p < 0.001) stage, and clinical stage (p < 0.001). Preoperative CA-125 levels were not significantly associated with clinical covariates. Neither biomarker was associated with survival or disease-free survival. With respect to nonpleural and nonlymphatic recurrences, mean SMRP levels were elevated in patients with pleural (p = 0.021) and lymph node (p = 0.042) recurrences. CA-125 levels were significantly higher in patients with abdominal (p < 0.001) and lymph node (p = 0.004) recurrences. Among patients with all three timepoints available, we observed an average decrease in SMRP levels by 1.93 nmol/L (p < 0.001) postoperatively and again an average increase at recurrence by 0.79 nmol/L (p < 0.001). There were no significant changes in levels of CA-125 across the study timepoints (p = 0.47). CONCLUSIONS: Longitudinal changes in SMRP levels corresponded with a radiographic presence of disease in a subset of patients. SMRP surveillance could aid in detection of local recurrences, whereas CA-125 could be helpful in recognizing abdominal recurrences.


Assuntos
Biomarcadores Tumorais , Antígeno Ca-125 , Neoplasias Pleurais , Humanos , Masculino , Feminino , Antígeno Ca-125/sangue , Idoso , Neoplasias Pleurais/cirurgia , Neoplasias Pleurais/sangue , Neoplasias Pleurais/patologia , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Mesotelioma/cirurgia , Mesotelioma/sangue , Mesotelioma/patologia , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/cirurgia , Mesotelina , Mesotelioma Maligno/cirurgia , Mesotelioma Maligno/sangue , Mesotelioma Maligno/patologia , Estudos Prospectivos , Adulto , Idoso de 80 Anos ou mais , Proteínas Ligadas por GPI/sangue , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia
19.
Pharmacol Res ; 203: 107186, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641176

RESUMO

Chimeric antigen receptor (CAR)-modified T cell therapy has achieved remarkable efficacy in treating hematological malignancies, but it confronts many challenges in treating solid tumors, such as the immunosuppressive microenvironment of the solid tumors. These factors reduce the antitumor activity of CAR-T cells in clinical trials. Therefore, we used the immunocytokine interleukin-12 (IL-12) to enhance the efficacy of CAR-T cell therapy. In this study, we engineered CAR-IL12R54 T cells that targeted mesothelin (MSLN) and secreted a single-chain IL-12 fused to a scFv fragment R54 that recognized a different epitope on mesothelin. The evaluation of the anti-tumor activity of the CAR-IL12R54 T cells alone or in combination with anti-PD-1 antibody in vitro and in vivo was followed by the exploration of the functional mechanism by which the immunocytokine IL-12 enhanced the antitumor activity. CAR-IL12R54 T cells had potency to lyse mesothelin positive tumor cells in vitro. In vivo studies demonstrated that CAR-IL12R54 T cells were effective in controlling the growth of established tumors in a xenograft mouse model with fewer side effects than CAR-T cells that secreted naked IL-12. Furthermore, combination of PD-1 blockade antibody with CAR-IL12R54 T cells elicited durable anti-tumor responses. Mechanistic studies showed that IL12R54 enhanced Interferon-γ (IFN-γ) production and dampened the activity of regulatory T cells (Tregs). IL12R54 also upregulated CXCR6 expression in the T cells through the NF-κB pathway, which facilitated T cell infiltration and persistence in the tumor tissues. In summary, the studies provide a good therapeutic option for the clinical treatment of solid tumors.


Assuntos
Imunoterapia Adotiva , Interleucina-12 , Mesotelina , Receptores de Antígenos Quiméricos , Animais , Interleucina-12/imunologia , Interleucina-12/genética , Humanos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Linhagem Celular Tumoral , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/antagonistas & inibidores , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Interleucina-12/genética , Receptores de Interleucina-12/imunologia , Linfócitos T/imunologia
20.
J Exp Clin Cancer Res ; 43(1): 103, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570866

RESUMO

BACKGROUND: Brain metastasis (BM) is common among cases of advanced non-small cell lung cancer (NSCLC) and is the leading cause of death for these patients. Mesothelin (MSLN), a tumor-associated antigen expressed in many solid tumors, has been reported to be involved in the progression of multiple tumors. However, its potential involvement in BM of NSCLC and the underlying mechanism remain unknown. METHODS: The expression of MSLN was validated in clinical tissue and serum samples using immunohistochemistry and enzyme-linked immunosorbent assay. The ability of NSCLC cells to penetrate the blood-brain barrier (BBB) was examined using an in vitro Transwell model and an ex vivo multi-organ microfluidic bionic chip. Immunofluorescence staining and western blotting were used to detect the disruption of tight junctions. In vivo BBB leakiness assay was performed to assess the barrier integrity. MET expression and activation was detected by western blotting. The therapeutic efficacy of drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) on BM was evaluated in animal studies. RESULTS: MSLN expression was significantly elevated in both serum and tumor tissue samples from NSCLC patients with BM and correlated with a poor clinical prognosis. MSLN significantly enhanced the brain metastatic abilities of NSCLC cells, especially BBB extravasation. Mechanistically, MSLN facilitated the expression and activation of MET through the c-Jun N-terminal kinase (JNK) signaling pathway, which allowed tumor cells to disrupt tight junctions and the integrity of the BBB and thereby penetrate the barrier. Drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) effectively blocked the development of BM and prolonged the survival of mice. CONCLUSIONS: Our results demonstrate that MSLN plays a critical role in BM of NSCLC by modulating the JNK/MET signaling network and thus, provides a potential novel therapeutic target for preventing BM in NSCLC patients.


Assuntos
Benzamidas , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Imidazóis , Neoplasias Pulmonares , Triazinas , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Mesotelina , Neoplasias Pulmonares/patologia , Proteínas Ligadas por GPI/metabolismo , Crizotinibe , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA