Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Brain Behav Immun ; 89: 480-490, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717399

RESUMO

The incidence of infectious diseases affecting the central nervous system (CNS) has been increasing over the last several years. Among the reasons for the expansion of these diseases and the appearance of new neuropathogens are globalization, global warming, and the increased proximity between humans and wild animals due to human activities such as deforestation. Neurotropism affecting normal brain function is shared by organisms such as viruses, bacteria, fungi, and parasites. Neuroinfections caused by these agents activate immune responses, inducing neuroinflammation, excitotoxicity, and neurodegeneration. Purinergic signaling is an evolutionarily conserved signaling pathway associated with these neuropathologies. During neuroinfections, host cells release ATP as an extracellular danger signal with pro-inflammatory activities. ATP is metabolized to its derivatives by ectonucleotidases such as CD39 and CD73; ATP and its metabolites modulate neuronal and immune mechanisms through P1 and P2 purinergic receptors that are involved in pathophysiological mechanisms of neuroinfections. In this review we discuss the beneficial or deleterious effects of various components of the purinergic signaling pathway in infectious diseases that affect the CNS, including human immunodeficiency virus (HIV-1) infection, herpes simplex virus type 1 (HSV-1) infection, bacterial meningitis, sepsis, cryptococcosis, toxoplasmosis, and malaria. We also provide a description of this signaling pathway in emerging viral infections with neurological implications such as Zika and SARS-CoV-2.


Assuntos
Infecções do Sistema Nervoso Central/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Complexo AIDS Demência/metabolismo , Betacoronavirus , COVID-19 , Infecções por Coronavirus/metabolismo , Encefalite por Herpes Simples/metabolismo , Humanos , Malária/metabolismo , Meningites Bacterianas/metabolismo , Meningite Criptocócica/metabolismo , Pandemias , Pneumonia Viral/metabolismo , SARS-CoV-2 , Sepse/metabolismo , Transdução de Sinais , Toxoplasmose Cerebral/metabolismo , Infecção por Zika virus/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-28483963

RESUMO

To make advances in the treatment of cryptococcal meningitis, it is crucial to know a given drug's free fraction that reaches the biophase. In the present study, we applied microdialysis (µD) as a tool to determine the free levels reached by voriconazole (VRC) in the brains of healthy and Cryptococcus neoformans-infected rats. The infection was induced by the intravenous (i.v.) administration of 1 × 105 CFU of yeast. The dose administered was 5 mg/kg (of body weight) of VRC, given i.v. Plasma and microdialysate samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and LC-UV methods. The free brain/free plasma ratio (fT) and population pharmacokinetic (popPK) analyses were performed to evaluate the impact of infection on PK parameters of the drug. The brain penetration ratio showed an increase on brain exposure in infected animals (fThealthy = 0.85 versus fTinfected = 1.86). The structural PK model with two compartments and Michaelis-Menten (MM) elimination describes the VRC concentration-time profile in plasma and tissue simultaneously. The covariate infection was included in volume of distribution in the peripheral compartment in healthy animals (V2) and maximum rate of metabolism (VM ). The levels reached in infected tissues were higher than the values described for MIC of VRC for Cryptococccus neoformans (0.03 to 0.5 µg ml-1), indicating its great potential to treat meningitis associated with C. neoformans.


Assuntos
Encéfalo/metabolismo , Voriconazol/farmacocinética , Voriconazol/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/patogenicidade , Masculino , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/metabolismo , Microdiálise , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA