Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.797
Filtrar
1.
Dev Cell ; 59(17): 2275-2276, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39255772

RESUMO

In this issue of Developmental Cell, Shiraishi et al. investigate the epigenetic changes occurring during the formation of SHH medulloblastoma and show that an epigenomic shift renders Nuclear Factor I family of transcription factors oncogenic.


Assuntos
Epigênese Genética , Proteínas Hedgehog , Meduloblastoma , Fatores de Transcrição NFI , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fatores de Transcrição NFI/metabolismo , Fatores de Transcrição NFI/genética , Animais , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Camundongos
3.
Acta Neuropathol Commun ; 12(1): 125, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107797

RESUMO

Sonic hedgehog subgroup of medulloblastoma (SHH-MB) is characterized by aberrant activation of the SHH signaling pathway. An inhibition of the positive SHH regulator Smoothened (SMO) has demonstrated promising clinical efficacy. Yet, primary and acquired resistance to SMO inhibitors limit their efficacy. An understanding of underlying molecular mechanisms of resistance to therapy is warranted to bridge this unmet need. Here, we make use of genome-wide CRISPR-Cas9 knockout screens in murine SMB21 and human DAOY cells, in order to unravel genetic dependencies and drug-related genetic interactors that could serve as alternative therapeutic targets for SHH-MB. Our screens reinforce SMB21 cells as a faithful model system for SHH-MB, as opposed to DAOY cells, and identify members of the epigenetic machinery including DNA methyltransferase 1 (DNMT1) as druggable targets in SHH-dependent tumors. We show that Dnmt1 plays a crucial role in normal murine cerebellar development and is required for SHH-MB growth in vivo. Additionally, DNMT1 pharmacological inhibition alone and in combination with SMO inhibition effectively inhibits tumor growth in murine and human SHH-MB cell models and prolongs survival of SHH-MB mouse models by inhibiting SHH signaling output downstream of SMO. In conclusion, our data highlight the potential of inhibiting epigenetic regulators as a novel therapeutic avenue in SMO-inhibitor sensitive as well as resistant SHH-MBs.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Cerebelares , DNA (Citosina-5-)-Metiltransferase 1 , Proteínas Hedgehog , Meduloblastoma , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Animais , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Humanos , Camundongos , Linhagem Celular Tumoral , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Técnicas de Inativação de Genes/métodos
4.
Acta Neuropathol Commun ; 12(1): 138, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198884

RESUMO

Medulloblastoma, the most common malignant pediatric brain tumor, is classified into four main molecular subgroups, but group 3 and group 4 tumors are difficult to subclassify and have a poor prognosis. Rapid point-of-care diagnostic and prognostic assays are needed to improve medulloblastoma risk stratification and management. N6-methyladenosine (m6A) is a common RNA modification and long non-coding RNAs (lncRNAs) play a central role in tumor progression, but their impact on gene expression and associated clinical outcomes in medulloblastoma are unknown. Here we analyzed 469 medulloblastoma tumor transcriptomes to identify lncRNAs co-expressed with m6A regulators. Using LASSO-Cox analysis, we identified a five-gene m6A-associated lncRNA signature (M6LSig) significantly associated with overall survival, which was combined in a prognostic clinical nomogram. Using expression of the 67 m6A-associated lncRNAs, a subgroup classification model was generated using the XGBoost machine learning algorithm, which had a classification accuracy > 90%, including for group 3 and 4 samples. All M6LSig genes were significantly correlated with at least one immune cell type abundance in the tumor microenvironment, and the risk score was positively correlated with CD4+ naïve T cell abundance and negatively correlated with follicular helper T cells and eosinophils. Knockdown of key m6A writer genes METTL3 and METTL14 in a group 3 medulloblastoma cell line (D425-Med) decreased cell proliferation and upregulated many M6LSig genes identified in our in silico analysis, suggesting that the signature genes are functional in medulloblastoma. This study highlights a crucial role for m6A-dependent lncRNAs in medulloblastoma prognosis and immune responses and provides the foundation for practical clinical tools that can be rapidly deployed in clinical settings.


Assuntos
Adenosina , Neoplasias Cerebelares , Meduloblastoma , RNA Longo não Codificante , Transcriptoma , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Prognóstico , Criança , Perfilação da Expressão Gênica/métodos , Masculino , Feminino , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Metiltransferases
5.
Radiol Artif Intell ; 6(5): e230115, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39166971

RESUMO

Purpose To evaluate nnU-Net-based segmentation models for automated delineation of medulloblastoma tumors on multi-institutional MRI scans. Materials and Methods This retrospective study included 78 pediatric patients (52 male, 26 female), with ages ranging from 2 to 18 years, with medulloblastomas, from three different sites (28 from hospital A, 18 from hospital B, and 32 from hospital C), who had data available from three clinical MRI protocols (gadolinium-enhanced T1-weighted, T2-weighted, and fluid-attenuated inversion recovery). The scans were retrospectively collected from the year 2000 until May 2019. Reference standard annotations of the tumor habitat, including enhancing tumor, edema, and cystic core plus nonenhancing tumor subcompartments, were performed by two experienced neuroradiologists. Preprocessing included registration to age-appropriate atlases, skull stripping, bias correction, and intensity matching. The two models were trained as follows: (a) the transfer learning nnU-Net model was pretrained on an adult glioma cohort (n = 484) and fine-tuned on medulloblastoma studies using Models Genesis and (b) the direct deep learning nnU-Net model was trained directly on the medulloblastoma datasets, across fivefold cross-validation. Model robustness was evaluated on the three datasets when using different combinations of training and test sets, with data from two sites at a time used for training and data from the third site used for testing. Results Analysis on the three test sites yielded Dice scores of 0.81, 0.86, and 0.86 and 0.80, 0.86, and 0.85 for tumor habitat; 0.68, 0.84, and 0.77 and 0.67, 0.83, and 0.76 for enhancing tumor; 0.56, 0.71, and 0.69 and 0.56, 0.71, and 0.70 for edema; and 0.32, 0.48, and 0.43 and 0.29, 0.44, and 0.41 for cystic core plus nonenhancing tumor for the transfer learning and direct nnU-Net models, respectively. The models were largely robust to site-specific variations. Conclusion nnU-Net segmentation models hold promise for accurate, robust automated delineation of medulloblastoma tumor subcompartments, potentially leading to more effective radiation therapy planning in pediatric medulloblastoma. Keywords: Pediatrics, MR Imaging, Segmentation, Transfer Learning, Medulloblastoma, nnU-Net, MRI Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Rudie and Correia de Verdier in this issue.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/patologia , Criança , Adolescente , Feminino , Masculino , Estudos Retrospectivos , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/patologia , Pré-Escolar , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
6.
Cancer Cell ; 42(8): 1434-1449.e5, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137728

RESUMO

Hypothyroidism is commonly detected in patients with medulloblastoma (MB). However, whether thyroid hormone (TH) contributes to MB pathogenicity remains undetermined. Here, we find that TH plays a critical role in promoting tumor cell differentiation. Reduction in TH levels frees the TH receptor, TRα1, to bind to EZH2 and repress expression of NeuroD1, a transcription factor that drives tumor cell differentiation. Increased TH reverses EZH2-mediated repression of NeuroD1 by abrogating the binding of EZH2 and TRα1, thereby stimulating tumor cell differentiation and reducing MB growth. Importantly, TH-induced differentiation of tumor cells is not restricted by the molecular subgroup of MB, suggesting that TH can be used to broadly treat MB subgroups. These findings establish an unprecedented association between TH signaling and MB pathogenicity, providing solid evidence for TH as a promising modality for MB treatment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Proteína Potenciadora do Homólogo 2 de Zeste , Meduloblastoma , Hormônios Tireóideos , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Meduloblastoma/genética , Humanos , Diferenciação Celular/efeitos dos fármacos , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Camundongos , Hormônios Tireóideos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/tratamento farmacológico , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Transdução de Sinais/efeitos dos fármacos
7.
Sci Rep ; 14(1): 17922, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095557

RESUMO

Alterations in miRNA levels have been observed in various types of cancer, impacting numerous cellular processes and increasing their potential usefulness in combination therapies also in brain tumors. Recent advances in understanding the genetics and epigenetics of brain tumours point to new aberrations and associations, making it essential to continually update knowledge and classification. Here we conducted molecular analysis of 123 samples of childhood brain tumors (pilocytic astrocytoma, medulloblastoma, ependymoma), focusing on identification of genes that could potentially be regulated by crucial representatives of OncomiR-1: miR-17-5p and miR-20a-5p. On the basis of microarray gene expression analysis and qRTPCR profiling, we selected six (WEE1, CCND1, VEGFA, PTPRO, TP53INP1, BCL2L11) the most promising target genes for further experiments. The WEE1, CCND1, PTPRO, TP53INP1 genes showed increased expression levels in all tested entities with the lowest increase in the pilocytic astrocytoma compared to the ependymoma and medulloblastoma. The obtained results indicate a correlation between gene expression and the WHO grade and subtype. Furthermore, our analysis showed that the integration between genomic and epigenetic pathways should now point the way to further molecular research.


Assuntos
Neoplasias Encefálicas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs , Humanos , MicroRNAs/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Masculino , Feminino , Adolescente , Pré-Escolar , Meduloblastoma/genética , Meduloblastoma/patologia , Astrocitoma/genética , Astrocitoma/patologia , Ependimoma/genética , Lactente
9.
Nat Cell Biol ; 26(8): 1233-1246, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025928

RESUMO

OTX2 is a transcription factor and known driver in medulloblastoma (MB), where it is amplified in a subset of tumours and overexpressed in most cases of group 3 and group 4 MB. Here we demonstrate a noncanonical role for OTX2 in group 3 MB alternative splicing. OTX2 associates with the large assembly of splicing regulators complex through protein-protein interactions and regulates a stem cell splicing program. OTX2 can directly or indirectly bind RNA and this may be partially independent of its DNA regulatory functions. OTX2 controls a pro-tumorigenic splicing program that is mirrored in human cerebellar rhombic lip origins. Among the OTX2-regulated differentially spliced genes, PPHLN1 is expressed in the most primitive rhombic lip stem cells, and targeting PPHLN1 splicing reduces tumour growth and enhances survival in vivo. These findings identify OTX2-mediated alternative splicing as a major determinant of cell fate decisions that drive group 3 MB progression.


Assuntos
Processamento Alternativo , Neoplasias Cerebelares , Meduloblastoma , Células-Tronco Neoplásicas , Fatores de Transcrição Otx , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição Otx/genética , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Processamento Alternativo/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Camundongos , Proliferação de Células
10.
Cell Rep ; 43(8): 114559, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39078737

RESUMO

Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ∼30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe a zebrafish model of SHH MB using CRISPR to create mutant ptch1, the primary genetic driver of human SHH MB. In these animals, tumors rapidly arise in the cerebellum and resemble human SHH MB by histology and comparative onco-genomics. Similar to human patients, MB tumors with loss of both ptch1 and tp53 have aggressive tumor histology and significantly worse survival outcomes. The simplicity and scalability of the ptch1-crispant MB model makes it highly amenable to CRISPR-based genome-editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the gene encoding Grk3 kinase as one such target.


Assuntos
Modelos Animais de Doenças , Proteínas Hedgehog , Meduloblastoma , Receptor Patched-1 , Proteínas de Peixe-Zebra , Peixe-Zebra , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Sistemas CRISPR-Cas/genética
11.
J Neuroimmunol ; 393: 578402, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-38996717

RESUMO

Few T cells infiltrate into primary brain tumors, fundamentally hampering the effectiveness of immunotherapy. We hypothesized that Toxoplasma gondii, a microorganism that naturally elicits a Th1 response in the brain, can promote T cell infiltration into brain tumors despite their immune suppressive microenvironment. Using a mouse genetic model for medulloblastoma, we found that T. gondii infection induced the infiltration of activatable T cells into the tumor mass and led to myeloid cell reprogramming toward a T cell-supportive state, without causing severe health issues in mice. The study provides a concrete foundation for future studies to take advantage of the immune modulatory capacity of T. gondii to facilitate brain tumor immunotherapy.


Assuntos
Neoplasias Encefálicas , Toxoplasmose , Animais , Camundongos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Toxoplasmose/imunologia , Toxoplasma/imunologia , Meduloblastoma/imunologia , Meduloblastoma/patologia , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos Transgênicos , Feminino
12.
Cell ; 187(17): 4733-4750.e26, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38971152

RESUMO

We identify a population of Protogenin-positive (PRTG+ve) MYChigh NESTINlow stem cells in the four-week-old human embryonic hindbrain that subsequently localizes to the ventricular zone of the rhombic lip (RLVZ). Oncogenic transformation of early Prtg+ve rhombic lip stem cells initiates group 3 medulloblastoma (Gr3-MB)-like tumors. PRTG+ve stem cells grow adjacent to a human-specific interposed vascular plexus in the RLVZ, a phenotype that is recapitulated in Gr3-MB but not in other types of medulloblastoma. Co-culture of Gr3-MB with endothelial cells promotes tumor stem cell growth, with the endothelial cells adopting an immature phenotype. Targeting the PRTGhigh compartment of Gr3-MB in vivo using either the diphtheria toxin system or chimeric antigen receptor T cells constitutes effective therapy. Human Gr3-MBs likely arise from early embryonic RLVZ PRTG+ve stem cells inhabiting a specific perivascular niche. Targeting the PRTGhigh compartment and/or the perivascular niche represents an approach to treat children with Gr3-MB.


Assuntos
Meduloblastoma , Células-Tronco Neoplásicas , Humanos , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Animais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Camundongos , Rombencéfalo/metabolismo , Rombencéfalo/embriologia , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Células Endoteliais/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Técnicas de Cocultura , Estruturas Embrionárias , Metencéfalo/embriologia
13.
Sci Rep ; 14(1): 16074, 2024 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992221

RESUMO

SNCAIP duplication may promote Group 4 medulloblastoma via induction of PRDM6, a poorly characterized member of the PRDF1 and RIZ1 homology domain-containing (PRDM) family of transcription factors. Here, we investigated the function of PRDM6 in human hindbrain neuroepithelial stem cells and tested PRDM6 as a driver of Group 4 medulloblastoma. We report that human PRDM6 localizes predominantly to the nucleus, where it causes widespread repression of chromatin accessibility and complex alterations of gene expression patterns. Genome-wide mapping of PRDM6 binding reveals that PRDM6 binds to chromatin regions marked by histone H3 lysine 27 trimethylation that are located within, or proximal to, genes. Moreover, we show that PRDM6 expression in neuroepithelial stem cells promotes medulloblastoma. Surprisingly, medulloblastomas derived from PRDM6-expressing neuroepithelial stem cells match human Group 3, but not Group 4, medulloblastoma. We conclude that PRDM6 expression has oncogenic potential but is insufficient to drive Group 4 medulloblastoma from neuroepithelial stem cells. We propose that both PRDM6 and additional factors, such as specific cell-of-origin features, are required for Group 4 medulloblastoma. Given the lack of PRDM6 expression in normal tissues and its oncogenic potential shown here, we suggest that PRDM6 inhibition may have therapeutic value in PRDM6-expressing medulloblastomas.


Assuntos
Cromatina , Meduloblastoma , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Cromatina/metabolismo , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Células Neuroepiteliais/metabolismo
14.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062749

RESUMO

Survival of Medulloblastoma (MB) depends on various factors, including the gene expression profiles of MB tumor tissues. In this study, we identified 967 MB survival-related genes (SRGs) using a gene expression dataset and the Cox proportional hazards regression model. Notably, the SRGs were over-represented on chromosomes 6 and 17, known for the abnormalities monosomy 6 and isochromosome 17 in MB. The most significant SRG was HMGA1 (high mobility group AT-hook 1) on chromosome 6, which is a known oncogene and a histone H1 competitor. High expression of HMGA1 was associated with worse survival, primarily in the Group 3γ subtype. The high expression of HMGA1 was unrelated to any known somatic copy number alteration. Most SRGs on chromosome 17p were associated with low expression in Group 4ß, the MB subtype, with 93% deletion of 17p and 98% copy gain of 17q. GO enrichment analysis showed that both chromosomes 6 and 17 included SRGs related to telomere maintenance and provided a rationale for testing telomerase inhibitors in Group 3 MBs. We conclude that HMGA1, along with other SRGs on chromosomes 6 and 17, warrant further investigation as potential therapeutic targets in selected subgroups or subtypes of MB.


Assuntos
Cromossomos Humanos Par 17 , Cromossomos Humanos Par 6 , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 6/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Regulação Neoplásica da Expressão Gênica , Variações do Número de Cópias de DNA , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Feminino , Perfilação da Expressão Gênica
15.
Cancer Cell ; 42(7): 1154-1157, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981435

RESUMO

Recent incorporation of the four primary medulloblastoma subgroups into the WHO Classification of Central Nervous System Tumors necessitates globally accessible methods to discern subgroups. In this issue of Cancer Cell, Wang et al. develop a rapid and reliable machine learning workflow for pre-operative subgroup determination using routine magnetic resonance imaging.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Meduloblastoma/patologia , Meduloblastoma/classificação , Meduloblastoma/genética , Meduloblastoma/diagnóstico por imagem , Humanos , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/genética , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina
16.
Biomolecules ; 14(7)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39062517

RESUMO

Medulloblastoma is the most common pediatric brain cancer, with about five cases per million in the pediatric population. Current treatment strategies have a 5-year survival rate of 70% or more but frequently lead to long-term neurocognitive defects, and recurrence is relatively high. Genomic sequencing of medulloblastoma patients has shown that DDX3X, which encodes an RNA helicase involved in the process of translation initiation, is among the most commonly mutated genes in medulloblastoma. The identified mutations are 42 single-point amino acid substitutions and are mostly not complete loss-of-function mutations. The pathological mechanism of DDX3X mutations in the causation of medulloblastoma is poorly understood, but several studies have examined their role in promoting cancer progression. This review first discusses the known roles of DDX3X and its yeast ortholog Ded1 in translation initiation, cellular stress responses, viral replication, innate immunity, inflammatory programmed cell death, Wnt signaling, and brain development. It then examines our current understanding of the oncogenic mechanism of the DDX3X mutations in medulloblastoma, including the effect of these DDX3X mutations on growth, biochemical functions, translation, and stress responses. Further research on DDX3X's mechanism and targets is required to therapeutically target DDX3X and/or its downstream effects in medulloblastoma progression.


Assuntos
RNA Helicases DEAD-box , Progressão da Doença , Meduloblastoma , Mutação , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Animais , Proteínas de Saccharomyces cerevisiae
17.
Radiat Res ; 202(3): 503-509, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39048112

RESUMO

Carbon ion radiotherapy (CIRT) for pediatric cancer is currently limited because of the unknown risk of induction of secondary cancers. Medulloblastoma of Ptch1+/- mice offers a unique experimental system for radiation-induced carcinogenesis, in which tumors are classified into spontaneous and radiation-induced subtypes based on their features of loss of heterozygosity (LOH) that affect the wild-type Ptch1 allele. The present study aims to investigate in young Ptch1+/- mice the carcinogenic effect, and its age dependence, of the low-linear energy transfer (LET, ∼13 keV/µm) carbon ions, to which normal tissues in front of the tumor are exposed during therapy. We irradiated Ptch1+/- mice at postnatal day (P) 1, 4, or 10 with 290 MeV/u carbon ions (0.05-0.5 Gy; LET, 13 keV/µm) and monitored them for medulloblastoma development. Loss of heterozygosity of seven genetic markers on chromosome 13 (where Ptch1 resides) was studied to classify the tumors. Carbon ion exposure induced medulloblastoma most effectively at P1. The LOH patterns of tumors were either telomeric or interstitial, the latter occurring almost exclusively in the irradiated groups, allowing the use of interstitial LOH as a biomarker of radiation-induced tumors. Radiation-induced tumors developed during a narrow age window (most strongly at P1 and only moderately at P4, with suppressed tumorigenesis at P10). Calculated using previous results using 137Cs gamma rays, the values for relative biological effectiveness (RBE) regarding radiation-induced tumors were 4.1 (3.4, 4.8) and 4.3 (3.3, 5.2) (mean and 95% confidence interval) for exposure at P1 and 4, respectively. Thus, the RBE of carbon ions for medulloblastoma induction in Ptch1+/- mice was higher than the generally recognized RBE of 1-2 for cell killing, chromosome aberrations, and skin reactions.


Assuntos
Deleção Cromossômica , Meduloblastoma , Receptor Patched-1 , Eficiência Biológica Relativa , Animais , Meduloblastoma/radioterapia , Meduloblastoma/genética , Meduloblastoma/patologia , Receptor Patched-1/genética , Camundongos , Radioterapia com Íons Pesados , Neoplasias Induzidas por Radiação/genética , Transferência Linear de Energia , Perda de Heterozigosidade/efeitos da radiação , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/patologia , Carbono
18.
Cell Death Differ ; 31(10): 1349-1361, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38879724

RESUMO

Development of the cerebellum requires precise regulation of granule neuron progenitor (GNP) proliferation. Although it is known that primary cilia are necessary to support GNP proliferation, the exact molecular mechanism governing primary cilia dynamics within GNPs remains elusive. Here, we establish the pivotal roles for the centrosomal kinase TTBK2 (Tau tubulin kinase-2) and the E3 ubiquitin ligase HUWE1 in GNP proliferation. We show that TTBK2 is highly expressed in proliferating GNPs under Sonic Hedgehog (SHH) signaling, coinciding with active GNP proliferation and the presence of primary cilia. TTBK2 stabilizes primary cilia by inhibiting their disassembly, thereby promoting GNP proliferation in response to SHH. Mechanistically, we identify HUWE1 as a novel centrosomal E3 ligase that facilitates primary cilia disassembly by targeting TTBK2 degradation. Disassembly of primary cilia serves as a trigger for GNP differentiation, allowing their migration from the external granule layer (EGL) of the cerebellum to the internal granule layer (IGL) for subsequent maturation. Moreover, we have established a link between TTBK2 and SHH-type medulloblastoma (SHH-MB), a tumor characterized by uncontrolled GNP proliferation. TTBK2 depletion inhibits SHH-MB proliferation, indicating that TTBK2 may be a potential therapeutic target for this cancer type. In summary, our findings reveal the mechanism governing cerebellar development and highlight a potential anti-cancer strategy for SHH-MB.


Assuntos
Proliferação de Células , Cerebelo , Cílios , Proteínas Hedgehog , Meduloblastoma , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Meduloblastoma/genética , Cílios/metabolismo , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Cerebelo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Camundongos , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Diferenciação Celular , Células-Tronco Neurais/metabolismo
19.
J Cell Biochem ; 125(8): e30616, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924562

RESUMO

Prostaglandin F2 receptor negative regulator (PTGFRN) is a transmembrane protein associated with metastatic characteristics of certain cancer types. However, it remains poorly characterized and its direct function in cancer remains unclear. The study presented here aims to further examine whether PTGFRN expression affects a cancer cell's phenotype, as well as metastatic-like characteristics. We used stable shRNA and cDNA transfections to respectively knockdown and overexpress PTGFRN in three different cancer cell lines, two of which are representative of rare and aggressive cancers (Mesothelioma and Pediatric Medulloblastoma). We then examined the characteristics of the resulting clones and showed a decrease in proliferation, migration, colony formation, and spheroid growth capabilities in cells where PTGFRN expression had been inhibited, while cells overexpressing PTGFRN showed the opposite. In addition, we showed that PTGFRN displayed direct binding to two protein partners, Integrin ß1 and E. Cadherin, the latter of which is a novel direct binding partner to PTGFRN. Furthermore, silencing PTGFRN expression impacted the cellular process of autophagy, thereby providing another avenue by which PTGFRN potentially contributes to a cancer cell phenotype. Our findings demonstrate the potential role of PTGFRN in cancer metastasis and suggest PTGFRN as a future target for drug development in the treatment of metastatic cancers.


Assuntos
Carcinoma de Células Escamosas , Meduloblastoma , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/genética , Meduloblastoma/patologia , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Metástase Neoplásica , Movimento Celular , Fenótipo , Caderinas/metabolismo , Caderinas/genética , Criança , Autofagia
20.
Br J Cancer ; 131(4): 763-777, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942989

RESUMO

BACKGROUND: Certain paediatric nervous system malignancies have dismal prognoses. Retinoic acid (RA) is used in neuroblastoma treatment, and preclinical data indicate potential benefit in selected paediatric brain tumour entities. However, limited single-agent efficacy necessitates combination treatment approaches. METHODS: We performed drug sensitivity profiling of 76 clinically relevant drugs in combination with RA in 16 models (including patient-derived tumouroids) of the most common paediatric nervous system tumours. Drug responses were assessed by viability assays, high-content imaging, and apoptosis assays and RA relevant pathways by RNAseq from treated models and patient samples obtained through the precision oncology programme INFORM (n = 2288). Immunoprecipitation detected BCL-2 family interactions, and zebrafish embryo xenografts were used for in vivo efficacy testing. RESULTS: Group 3 medulloblastoma (MBG3) and neuroblastoma models were highly sensitive to RA treatment. RA induced differentiation and regulated apoptotic genes. RNAseq analysis revealed high expression of BCL2L1 in MBG3 and BCL2 in neuroblastomas. Co-treatments with RA and BCL-2/XL inhibitor navitoclax synergistically decreased viability at clinically achievable concentrations. The combination of RA with navitoclax disrupted the binding of BIM to BCL-XL in MBG3 and to BCL-2 in neuroblastoma, inducing apoptosis in vitro and in vivo. CONCLUSIONS: RA treatment primes MBG3 and NB cells for apoptosis, triggered by navitoclax cotreatment.


Assuntos
Apoptose , Sinergismo Farmacológico , Meduloblastoma , Neuroblastoma , Tretinoína , Peixe-Zebra , Humanos , Animais , Tretinoína/farmacologia , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Meduloblastoma/genética , Apoptose/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/genética , Linhagem Celular Tumoral , Compostos de Anilina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Sulfonamidas/farmacologia , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Camundongos , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Proto-Oncogênica N-Myc
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA