Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.560
Filtrar
1.
Sci Adv ; 10(40): eadm9801, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39356761

RESUMO

How eukaryotic ribosomes traverse messenger RNA (mRNA) leader sequences to search for protein-synthesis start sites remains one of the most mysterious aspects of translation and its regulation. While the search process is conventionally described by a linear "scanning" model, its exquisitely dynamic nature has restricted detailed mechanistic study. Here, we observed single Saccharomyces cerevisiae ribosomal scanning complexes in real time, finding that they scan diverse mRNA leaders at a rate of 10 to 20 nt s-1. We show that specific binding of a protein to its mRNA leader sequence substantially arrests scanning. Conversely, impairing scanning-complex guanosine 5'-triphosphate hydrolysis results in native start-site bypass. Our results illustrate an mRNA-centric, kinetically controlled regulatory model where the ribosomal pre-initiation complex amplifies a nuanced energetic landscape to regulate scanning and start-site selection fidelity.


Assuntos
RNA Mensageiro , Ribossomos , Saccharomyces cerevisiae , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Imagem Individual de Molécula/métodos , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Guanosina Trifosfato/metabolismo
2.
J Vis Exp ; (211)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39311556

RESUMO

Nucleosomes constitute the primary unit of eukaryotic chromatin and have been the focus of numerous informative single-molecule investigations regarding their biophysical properties and interactions with chromatin-binding proteins. Nucleosome reconstitution on DNA for these studies typically involves a salt dialysis procedure that provides precise control over the placement and number of nucleosomes formed along a DNA tether. However, this protocol is time-consuming and requires a substantial amount of DNA and histone octamers as inputs. To offer an alternative strategy, an in situ nucleosome reconstitution method for single-molecule force and fluorescence microscopy that utilizes the histone chaperone Nap1 is described. This method enables users to assemble nucleosomes on any DNA template without the need for strong nucleosome positioning sequences, adjust nucleosome density on demand, and use fewer reagents. In situ nucleosome formation occurs within seconds, offering a simpler experimental workflow and a convenient transition into single-molecule measurements. Examples of two downstream assays for probing nucleosome mechanics and visualizing the behavior of individual proteins on chromatin are further described.


Assuntos
Microscopia de Fluorescência , Nucleossomos , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/genética , Microscopia de Fluorescência/métodos , Proteína 1 de Modelagem do Nucleossomo/química , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteína 1 de Modelagem do Nucleossomo/genética , Imagem Individual de Molécula/métodos , DNA/química , DNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
3.
J Vis Exp ; (210)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39283143

RESUMO

Telomeres, the protective structures at the ends of chromosomes, are crucial for maintaining cellular longevity and genome stability. Their proper function depends on tightly regulated processes of replication, elongation, and damage response. The shelterin complex, especially Telomere Repeat-binding Factor 1 (TRF1) and TRF2, plays a pivotal role in telomere protection and has emerged as a potential anti-cancer target for drug discovery. These proteins bind to the repetitive telomeric DNA motif TTAGGG, facilitating the formation of protective structures and recruitment of other telomeric proteins. Structural methods and advanced imaging techniques have provided insights into telomeric protein-DNA interactions, but probing the dynamic processes requires single-molecule approaches. Tools like magnetic tweezers, optical tweezers, and atomic force microscopy (AFM) have been employed to study telomeric protein-DNA interactions, revealing important details such as TRF2-dependent DNA distortion and telomerase catalysis. However, the preparation of single-molecule constructs with telomeric repetitive motifs continues to be a challenging task, potentially limiting the breadth of studies utilizing single-molecule mechanical methods. To address this, we developed a method to study interactions using full-length human telomeric DNA with magnetic tweezers. This protocol describes how to express and purify TRF2, prepare telomeric DNA, set up single-molecule mechanical assays, and analyze data. This detailed guide will benefit researchers in telomere biology and telomere-targeted drug discovery.


Assuntos
DNA , Telômero , DNA/química , DNA/metabolismo , DNA/genética , Telômero/metabolismo , Telômero/química , Humanos , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Imagem Individual de Molécula/métodos , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteína 1 de Ligação a Repetições Teloméricas/genética , Pinças Ópticas
4.
Nat Commun ; 15(1): 8020, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271704

RESUMO

Most RNA-protein condensates are composed of heterogeneous immiscible phases. However, how this multiphase organization contributes to their biological functions remains largely unexplored. Drosophila germ granules, a class of RNA-protein condensates, are the site of mRNA storage and translational activation. Here, using super-resolution microscopy and single-molecule imaging approaches, we show that germ granules have a biphasic organization and that translation occurs in the outer phase and at the surface of the granules. The localization, directionality, and compaction of mRNAs within the granule depend on their translation status, translated mRNAs being enriched in the outer phase with their 5'end oriented towards the surface. Translation is strongly reduced when germ granule biphasic organization is lost. These findings reveal the intimate links between the architecture of RNA-protein condensates and the organization of their different functions, highlighting the functional compartmentalization of these condensates.


Assuntos
Grânulos Citoplasmáticos , Proteínas de Drosophila , Drosophila melanogaster , Biossíntese de Proteínas , RNA Mensageiro , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Grânulos Citoplasmáticos/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Células Germinativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Imagem Individual de Molécula , Drosophila/metabolismo , Drosophila/genética , Condensados Biomoleculares/metabolismo
5.
Sci Adv ; 10(39): eado3427, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39321299

RESUMO

Over the past decades, single-molecule and super-resolution microscopy have advanced and represent essential tools for life science research. There is, however, a growing gap between the state of the art and what is accessible to biologists, biochemists, medical researchers, or labs with financial constraints. To bridge this gap, we introduce Brick-MIC, a versatile and affordable open-source 3D-printed microspectroscopy and imaging platform. Brick-MIC enables the integration of various fluorescence imaging techniques with single-molecule resolution within a single platform and exchange between different modalities within minutes. We here present variants of Brick-MIC that facilitate single-molecule fluorescence detection, fluorescence correlation spectroscopy, time-correlated single-photon counting and super-resolution imaging (STORM and PAINT). Detailed descriptions of the hardware and software components, as well as data analysis routines, are provided, to allow non-optics specialists to operate their own Brick-MIC with minimal effort and investments. We foresee that our affordable, flexible, and open-source Brick-MIC platform will be a valuable tool for many laboratories worldwide.


Assuntos
Impressão Tridimensional , Imagem Individual de Molécula , Imagem Individual de Molécula/métodos , Microscopia de Fluorescência/métodos , Software , Humanos
7.
Nature ; 633(8030): 662-669, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39261738

RESUMO

The ability to sequence single protein molecules in their native, full-length form would enable a more comprehensive understanding of proteomic diversity. Current technologies, however, are limited in achieving this goal1,2. Here, we establish a method for the long-range, single-molecule reading of intact protein strands on a commercial nanopore sensor array. By using the ClpX unfoldase to ratchet proteins through a CsgG nanopore3,4, we provide single-molecule evidence that ClpX translocates substrates in two-residue steps. This mechanism achieves sensitivity to single amino acids on synthetic protein strands hundreds of amino acids in length, enabling the sequencing of combinations of single-amino-acid substitutions and the mapping of post-translational modifications, such as phosphorylation. To enhance classification accuracy further, we demonstrate the ability to reread individual protein molecules multiple times, and we explore the potential for highly accurate protein barcode sequencing. Furthermore, we develop a biophysical model that can simulate raw nanopore signals a priori on the basis of residue volume and charge, enhancing the interpretation of raw signal data. Finally, we apply these methods to examine full-length, folded protein domains for complete end-to-end analysis. These results provide proof of concept for a platform that has the potential to identify and characterize full-length proteoforms at single-molecule resolution.


Assuntos
Nanoporos , Proteínas , Análise de Sequência de Proteína , Imagem Individual de Molécula , Substituição de Aminoácidos , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Imagem Individual de Molécula/métodos
8.
Anal Chem ; 96(39): 15648-15656, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39298273

RESUMO

The current limitations of single-molecule localization microscopy (SMLM) in deep tissue imaging, primarily due to depth-dependent aberrations caused by refractive index (RI) mismatch, present a significant challenge in achieving high-resolution images at greater depths. To extend the imaging depth, we optimized the imaging buffer of SMLM with the RI matched to that of the objective immersion medium and systematically evaluated five different RI-matched buffers, focusing on their impact on the blinking behavior of red-absorbing dyes and the quality of reconstructed super-resolution images. Particularly, we found that clear unobstructed brain imaging cocktails-based imaging buffer could match the RI of oil and was able to clear the tissue samples. With the help of the RI-matched imaging buffers, we showed high-quality dual-color 3D SMLM images with imaging depths ranging from a few micrometers to tens of micrometers in both cultured cells and sectioned tissue samples. This advancement offers a practical and accessible method for high-resolution imaging at greater depths without the need for specialized optical equipment or expertise.


Assuntos
Encéfalo , Refratometria , Animais , Encéfalo/diagnóstico por imagem , Imagem Individual de Molécula/métodos , Imageamento Tridimensional , Humanos , Cor , Camundongos , Soluções Tampão , Corantes Fluorescentes/química
9.
Nat Commun ; 15(1): 7646, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223123

RESUMO

Despite their prevalent cancer implications, the in vivo dynamics of SWI/SNF chromatin remodelers and how misregulation of such dynamics underpins cancer remain poorly understood. Using live-cell single-molecule tracking, we quantify the intranuclear diffusion and chromatin-binding of three key subunits common to all major human SWI/SNF remodeler complexes (BAF57, BAF155 and BRG1), and resolve two temporally distinct stable binding modes for the fully assembled complex. Super-resolved density mapping reveals heterogeneous, nanoscale remodeler binding "hotspots" across the nucleoplasm where multiple binding events (especially longer-lived ones) preferentially cluster. Importantly, we uncover distinct roles of the bromodomain in modulating chromatin binding/targeting in a DNA-accessibility-dependent manner, pointing to a model where successive longer-lived binding within "hotspots" leads to sustained productive remodeling. Finally, systematic comparison of six common BRG1 mutants implicated in various cancers unveils alterations in chromatin-binding dynamics unique to each mutant, shedding insight into a multi-modal landscape regulating the spatio-temporal organizational dynamics of SWI/SNF remodelers.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Proteínas Cromossômicas não Histona , DNA Helicases , Neoplasias , Proteínas Nucleares , Imagem Individual de Molécula , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Imagem Individual de Molécula/métodos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromatina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ligação Proteica , Mutação , Linhagem Celular Tumoral , Domínios Proteicos , Adenosina Trifosfatases
10.
Nat Commun ; 15(1): 7740, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231922

RESUMO

The physical characterization of proteins in terms of their sizes, interactions, and assembly states is key to understanding their biological function and dysfunction. However, this has remained a difficult task because proteins are often highly polydisperse and present as multicomponent mixtures. Here, we address this challenge by introducing single-molecule microfluidic diffusional sizing (smMDS). This approach measures the hydrodynamic radius of single proteins and protein assemblies in microchannels using single-molecule fluorescence detection. smMDS allows for ultrasensitive sizing of proteins down to femtomolar concentrations and enables affinity profiling of protein interactions at the single-molecule level. We show that smMDS is effective in resolving the assembly states of protein oligomers and in characterizing the size of protein species within complex mixtures, including fibrillar protein aggregates and nanoscale condensate clusters. Overall, smMDS is a highly sensitive method for the analysis of proteins in solution, with wide-ranging applications in drug discovery, diagnostics, and nanobiotechnology.


Assuntos
Proteínas , Imagem Individual de Molécula , Imagem Individual de Molécula/métodos , Proteínas/química , Proteínas/análise , Soluções , Difusão , Microfluídica/métodos , Hidrodinâmica , Técnicas Analíticas Microfluídicas/métodos
11.
Proc Natl Acad Sci U S A ; 121(37): e2400654121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236238

RESUMO

The Caenorhabditis elegans HMP-2/HMP-1 complex, akin to the mammalian [Formula: see text]-catenin-[Formula: see text]-catenin complex, serves as a critical mechanosensor at cell-cell adherens junctions, transducing tension between HMR-1 (also known as cadherin in mammals) and the actin cytoskeleton. Essential for embryonic development and tissue integrity in C. elegans, this complex experiences tension from both internal actomyosin contractility and external mechanical microenvironmental perturbations. While offering a valuable evolutionary comparison to its mammalian counterpart, the impact of tension on the mechanical stability of HMP-1 and HMP-2/HMP-1 interactions remains unexplored. In this study, we directly quantified the mechanical stability of full-length HMP-1 and its force-bearing modulation domains (M1-M3), as well as the HMP-2/HMP-1 interface. Notably, the M1 domain in HMP-1 exhibits significantly higher mechanical stability than its mammalian analog, attributable to interdomain interactions with M2-M3. Introducing salt bridge mutations in the M3 domain weakens the mechanical stability of the M1 domain. Moreover, the intermolecular HMP-2/HMP-1 interface surpasses its mammalian counterpart in mechanical stability, enabling it to support the mechanical activation of the autoinhibited M1 domain for mechanotransduction. Additionally, the phosphomimetic mutation Y69E in HMP-2 weakens the mechanical stability of the HMP-2/HMP-1 interface, compromising the force-transmission molecular linkage and its associated mechanosensing functions. Collectively, these findings provide mechanobiological insights into the C. elegans HMP-2/HMP-1 complex, highlighting the impact of salt bridges on mechanical stability in [Formula: see text]-catenin and demonstrating the evolutionary conservation of the mechanical switch mechanism activating the HMP-1 modulation domain for protein binding at the single-molecule level.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mecanotransdução Celular , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Animais , Caenorhabditis elegans/metabolismo , Mecanotransdução Celular/fisiologia , Imagem Individual de Molécula , Ligação Proteica , Caderinas/metabolismo , Caderinas/química , Caderinas/genética , Junções Aderentes/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Proteínas do Citoesqueleto , alfa Catenina
12.
Biomed Khim ; 70(5): 287-303, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39324194

RESUMO

The use of CRISPR/Cas nucleases for the development of DNA diagnostic systems in out-of-laboratory conditions (point-of-need testing, PONT) has demonstrated rapid growth in the last few years, starting with the appearance in 2017-2018 of the first diagnostic platforms known as DETECTR and SHERLOCK. The platforms are based on a combination of methods of nucleic acid isothermal amplification with selective CRISPR/Cas detection of target amplicons. This significantly improves the sensitivity and specificity of PONT, making them comparable with or even superior to the sensitivity and specificity of polymerase chain reaction, considered as the "gold standard" of DNA diagnostics. The review considers modern approaches to the coupling of CRISPR/Cas detection using Cas9, Cas12a, Cas12b, Cas13a, Cas14, and Cas3 nucleases to various methods of nucleic acid isothermal amplification, with an emphasis on works in which sensitivity at the level of single molecules (attomolar and subattomolar concentrations of the target) is achieved. The properties of CRISPR/Cas nucleases used for targeted DNA diagnostics and the features of methods of nucleic acid isothermal amplification are briefly considered in the context of the development of diagnostic biosensing platforms. Special attention is paid to the most promising directions for the development of DNA diagnostics using CRISPR/Cas nuclease.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Amplificação de Ácido Nucleico , Imagem Individual de Molécula , Técnicas de Amplificação de Ácido Nucleico/métodos , Imagem Individual de Molécula/métodos , Patologia Molecular/métodos , Sensibilidade e Especificidade , Testes Imediatos , Humanos , Animais
13.
Proc Natl Acad Sci U S A ; 121(36): e2400677121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190357

RESUMO

Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single-molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extracellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, which morphogens can only overcome by passing through a membrane-unconfined state. Under this model, SCUBE1 promoted Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and identified knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.


Assuntos
Proteínas Hedgehog , Transdução de Sinais , Animais , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Difusão , Proteínas Hedgehog/metabolismo , Morfogênese , Imagem Individual de Molécula/métodos , Camundongos
14.
J Extracell Vesicles ; 13(8): e12498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39140467

RESUMO

High-sensitivity flow cytometers have been developed for multi-parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cancer (DiFi) cells by three high-sensitivity flow cytometers, two commercial instruments, CytoFLEX/CellStream, and a custom single-molecule flow cytometer (SMFC). DiFi EVs were stained with the membrane dye di-8-ANEPPS and with PE-conjugated anti-EGFR or anti-tetraspanin (CD9/CD63/CD81) antibodies for estimation of EV size and surface protein copy numbers. The limits of detection (LODs) for immunofluorescence and vesicle size based on calibration using cross-calibrated, hard-dyed beads were ∼10 PE/∼80 nm EV diameter for CytoFLEX and ∼10 PEs/∼67 nm for CellStream. For the SMFC, the LOD for immunofluorescence was 1 PE and ≤ 35 nm for size. The population of EVs detected by each system (di-8-ANEPPS+/PE+ particles) differed widely depending on the LOD of the system; for example, CellStream/CytoFLEX detected only 5.7% and 1.5% of the tetraspanin-labelled EVs detected by SMFC, respectively, and median EV diameter and antibody copy numbers were much larger for CellStream/CytoFLEX than for SMFC as measured and validated using super-resolution/single-molecule TIRF microscopy. To obtain a dataset representing a common EV population analysed by all three platforms, we filtered out SMFC and CellStream measurements for EVs below the CytoFLEX LODs as determined by bead calibration (10 PE/80 nm). The inter-platform agreement using this filtered dataset was significantly better than for the unfiltered dataset, but even better concordance between results was obtained by applying higher cutoffs (21 PE/120 nm) determined by threshold analysis using the SMFC data. The results demonstrate the impact of specifying LODs to define the EV population analysed on inter-instrument reproducibility in EV flow cytometry studies, and the utility of threshold analysis of SMFC data for providing semi-quantitative LOD values for other flow cytometers.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo , Citometria de Fluxo/métodos , Citometria de Fluxo/instrumentação , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias Colorretais/diagnóstico , Linhagem Celular Tumoral , Imagem Individual de Molécula/métodos , Imagem Individual de Molécula/instrumentação
15.
Nat Commun ; 15(1): 7197, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169038

RESUMO

Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1, SWS1, and SPIDR. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single-molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter Shu complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.


Assuntos
DNA de Cadeia Simples , Rad51 Recombinase , Proteína de Replicação A , Humanos , Reparo do DNA , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Imagem Individual de Molécula , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
16.
J Vis Exp ; (209)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39141566

RESUMO

Eukaryotes have one replicative helicase known as CMG, which centrally organizes and drives the replisome, and leads the way at the front of replication forks. Obtaining a deep mechanistic understanding of the dynamics of CMG is critical to elucidating how cells achieve the enormous task of efficiently and accurately replicating their entire genome once per cell cycle. Single-molecule techniques are uniquely suited to quantify the dynamics of CMG due to their unparalleled temporal and spatial resolution. Nevertheless, single-molecule studies of CMG motion have thus far relied on pre-formed CMG purified from cells as a complex, which precludes the study of the steps leading up to its activation. Here, we describe a hybrid ensemble and single-molecule assay that allowed imaging at the single-molecule level of the motion of fluorescently labeled CMG after fully reconstituting its assembly and activation from 36 different purified S. cerevisiae polypeptides. This assay relies on the double functionalization of the ends of a linear DNA substrate with two orthogonal attachment moieties, and can be adapted to study similarly complex DNA-processing mechanisms at the single-molecule level.


Assuntos
Saccharomyces cerevisiae , Imagem Individual de Molécula , Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula/métodos , DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Corantes Fluorescentes/química , Replicação do DNA , DNA Fúngico/genética
17.
Proc Natl Acad Sci U S A ; 121(33): e2401133121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102538

RESUMO

The hierarchic assembly of fibrillar collagen into an extensive and ordered supramolecular protein fibril is critical for extracellular matrix function and tissue mechanics. Despite decades of study, we still know very little about the complex process of fibrillogenesis, particularly at the earliest stages where observation of rapidly forming, nanoscale intermediates challenges the spatial and temporal resolution of most existing microscopy methods. Using video rate scanning atomic force microscopy (VRS-AFM), we can observe details of the first few minutes of collagen fibril formation and growth on a mica surface in solution. A defining feature of fibrillar collagens is a 67-nm periodic banding along the fibril driven by the organized assembly of individual monomers over multiple length scales. VRS-AFM videos show the concurrent growth and maturation of small fibrils from an initial uniform height to structures that display the canonical banding within seconds. Fibrils grow in a primarily unidirectional manner, with frayed ends of the growing tip latching onto adjacent fibrils. We find that, even at extremely early time points, remodeling of growing fibrils proceeds through bird-caging intermediates and propose that these dynamics may provide a pathway to mature hierarchic assembly. VRS-AFM provides a unique glimpse into the early emergence of banding and pathways for remodeling of the supramolecular assembly of collagen during the inception of fibrillogenesis.


Assuntos
Microscopia de Força Atômica , Imagem Individual de Molécula , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula/métodos , Animais , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/química , Colágeno/metabolismo , Colágeno/química , Silicatos de Alumínio
18.
Anal Chem ; 96(33): 13719-13726, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39120618

RESUMO

The rapid and sensitive quantification of low-abundance protein markers holds immense significance in early disease diagnosis and treatment. Single-molecule fluorescence imaging exhibits very high detection sensitivity and thus has great application potential in this area. The single-molecule signal, however, is often susceptible to interference from background noise due to its inherently weak intensity. A variety of signal amplification techniques based on cascading reactions have been developed to improve the signal-to-noise ratio of single-molecule imaging. Nevertheless, the operation of these methods is typically complicated and time-consuming, which limits the clinical application. Herein, we introduce an enzyme-free, photonic-crystal-based single-molecule (PC-SM) biochip for cost-effective, time-efficient, and ultrasensitive detection of disease markers. The PC-SM biochip can enhance the signal-to-noise ratio of single molecules by nearly 3-fold compared with unamplified samples, through coupling of the single-molecule photon energy with the optical band gap of the photonic crystal. We used the PC-SM biochip to detect the low-abundance leukemia inhibitory factor in the blood of pancreatic cancer patients and healthy people and achieved a detection limit of 2.0 pg/L and an AUC of 0.9067. The method exhibits exceptional sensitivity and specificity, showing great application potential in various clinical settings.


Assuntos
Biomarcadores Tumorais , Fótons , Imagem Individual de Molécula , Humanos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Imagem Individual de Molécula/métodos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Limite de Detecção , Imagem Óptica
19.
Biophys Rep (N Y) ; 4(3): 100173, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39097230

RESUMO

We present Full SMS, a multipurpose graphical user interface (GUI)-based software package for analyzing single-molecule spectroscopy (SMS) data. SMS typically delivers multiparameter data-such as fluorescence brightness, lifetime, and spectra-of molecular- or nanometer-scale particles such as single dye molecules, quantum dots, or fluorescently labeled biological macromolecules. Full SMS allows an unbiased statistical analysis of fluorescence brightness through level resolution and clustering, analysis of fluorescence lifetimes through decay fitting, as well as the calculation of second-order correlation functions and the display of fluorescence spectra and raster-scan images. Additional features include extensive data filtering options, a custom HDF5-based file format, and flexible data export options. The software is open source and written in Python but GUI based so it may be used without any programming knowledge. A multiprocess architecture was employed for computational efficiency. The software is also designed to be easily extendable to include additional import data types and analysis capabilities.


Assuntos
Imagem Individual de Molécula , Software , Imagem Individual de Molécula/métodos , Interface Usuário-Computador , Espectrometria de Fluorescência/métodos
20.
Nat Methods ; 21(9): 1755-1762, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39112798

RESUMO

DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a super-resolution fluorescence microscopy technique that achieves single-molecule 'blinking' by transient DNA hybridization. Despite blinking kinetics being largely independent of fluorescent dye choice, the dye employed substantially affects measurement quality. Thus far, there has been no systematic overview of dye performance for DNA-PAINT. Here we defined four key parameters characterizing performance: brightness, signal-to-background ratio, DNA-PAINT docking site damage and off-target signal. We then analyzed 18 fluorescent dyes in three spectral regions and examined them both in DNA origami nanostructures, establishing a reference standard, and in a cellular environment, targeting the nuclear pore complex protein Nup96. Finally, having identified several well-performing dyes for each excitation wavelength, we conducted simultaneous three-color DNA-PAINT combined with Exchange-PAINT to image six protein targets in neurons at ~16 nm resolution in less than 2 h. We thus provide guidelines for DNA-PAINT dye selection and evaluation and an overview of performances of commonly used dyes.


Assuntos
DNA , Corantes Fluorescentes , Microscopia de Fluorescência , Corantes Fluorescentes/química , DNA/química , Microscopia de Fluorescência/métodos , Animais , Humanos , Hibridização de Ácido Nucleico , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Neurônios/metabolismo , Nanoestruturas/química , Imagem Individual de Molécula/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA