RESUMO
To develop an effective treatment for the globally invasive Brazilian waterweed Egeria densa, anaerobic digestion was observed at 37 °C, 55 °C, and 65 °C. The average methane production rate at 55 °C was 220 mL L-1 day-1, which was two-fold that at 37 °C and 65 °C. Volatile fatty acid accumulation was detected under thermophilic conditions; however, although there was methane production, the system did not shutdown. The microbial communities differed between mesophilic (37 °C) and thermophilic (55 °C and 65 °C) conditions. A bacterial community consisting of the phyla Bacteroidetes (43%), Firmicutes (37%), Proteobacteria (9%), Synergistetes (5%), Spirochaetes (1%), and unclassified bacteria (5%) were detected under mesophilic condition. In contrast, the phylum Firmicutes was dominant under thermophilic conditions. In the archaeal community, Methanosaeta concilii (40%), Methanolinea sp. (17%), and unclassified euryarchaeota (43%) were detected under mesophilic condition. Methanosarcina thermophila (87% at 55 °C, 54% at 65 °C) and Methanothermobacter thermautotrophicus (13% at 55 °C, 46% at 65 °C) were detected under thermophilic conditions. At both 37 °C and 55 °C, acetoclastic methanogenesis likely occurred because of the lower abundance of hydrogenotrophic methanogens. At 65 °C, the growth of the acetoclastic methanogen Methanosarcina thermophila was limited by the high temperature, therefore, acetate oxidation and hydrogenotrophic methanogenesis may have occurred.
Assuntos
Archaea/classificação , Archaea/metabolismo , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/metabolismo , Hydrocharitaceae/metabolismo , Hydrocharitaceae/microbiologia , Temperatura , Anaerobiose , Archaea/isolamento & purificação , Bactérias Anaeróbias/isolamento & purificação , Brasil , Ácidos Graxos Voláteis/metabolismo , Fermentação , Metano/metabolismoRESUMO
Invasive aquatic plants from Lake Fúquene (Cundinamarca, Colombia), water hyacinth (Eichhornia crassipes C. Mart.) and Brazilian elodea (Egeria densa Planch.) have been removed mechanically from the lake and can be used for edible mushrooms production. The growth of the oyster mushroom (Pleurotus ostreatus) on these aquatic macrophytes was investigated in order to evaluate the possible use of fruiting bodies and spent biomass in food production for human and animal nutrition, respectively. Treatments included: water hyacinth, Brazilian elodea, sawdust, rice hulls and their combinations, inoculated with P. ostreatus at 3%. Water hyacinth mixed with sawdust stimulated significantly fruiting bodies production (P = 3.3 × 10(-7)) with 71% biological efficacy, followed by water hyacinth with rice husk (55%) and elodea with rice husk (48%), all of these have protein contents between 26 and 47%. Loss of lignin (0.9-21.6%), cellulose (3.7-58.3%) and hemicellulose (1.9-53.8%) and increment in vitro digestibility (16.7-139.3%) and reducing sugars (73.4-838.4%) were observed in most treatments. Treatments spent biomass presented Relative Forage Values (RFV) from 46.1 to 232.4%. The results demonstrated the fungus degrading ability and its potential use in aquatic macrophytes conversion biomass into digestible ruminant feed as added value to the fruiting bodies production for human nutrition.
Assuntos
Eichhornia/microbiologia , Indústria Alimentícia/métodos , Hydrocharitaceae/microbiologia , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Animais , Biomassa , Colômbia , Meios de Cultura , Humanos , Oryza/microbiologiaRESUMO
Marine biofilms are a virtually untapped source of bioactive molecules that may find application as novel antifoulants in the marine paint industry. This study aimed at determining the potential of marine biofilm bacteria to produce novel biomolecules with potential application as natural antifoulants. Nine representative strains were isolated from a range of surfaces and were grown in YEB medium and harvested during the late exponential growth phase. Bacterial biomass and spent culture medium were extracted with ethanol and ethyl acetate, respectively. Extracts were assayed for their antifouling activity using two tests: (1) antimicrobial well diffusion test against a common fouling bacterium, Halomonas marina, and (2) anti-crustacean activity test using Artemia salina. Our results showed that none of the ethanolic extracts (bacterial biomass) were active in either test. In contrast, most of the organic extracts had antimicrobial activity (88%) and were toxic towards A. salina (67%). Sequencing of full 16 S ribosomal DNA analysis showed that the isolates were related to Bacillus mojavensis and Bacillus firmus. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) profiling of ethyl acetate extracts of culture supernatants showed that these species produce the bioactive lipopeptides surfactin A, mycosubtilin and bacillomycin D.