Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Med Res ; 54(8): 102915, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37981525

RESUMO

Pituitary tumors (PT) are highly heterogeneous neoplasms, comprising functioning and nonfunctioning lesions. Functioning PT include prolactinomas, causing amenorrhea-galactorrhea in women and sexual dysfunction in men; GH-secreting adenomas causing acromegaly-gigantism; ACTH-secreting corticotrophinomas causing Cushing disease (CD); and the rare TSH-secreting thyrotrophinomas that result in central hyperthyroidism. Nonfunctioning PT do not result in a hormonal hypersecretion syndrome and most of them are of gonadotrope differentiation; other non-functioning PT include null cell adenomas and silent ACTH-, GH- and PRL-adenomas. Less than 5% of PT occur in a familial or syndromic context whereby germline mutations of specific genes account for their molecular pathogenesis. In contrast, the more common sporadic PT do not result from a single molecular abnormality but rather emerge from several oncogenic events that culminate in an increased proliferation of pituitary cells, and in the case of functioning tumors, in a non-regulated hormonal hypersecretion. In recent years, important advances in the understanding of the molecular pathogenesis of PT have been made, including the genomic, transcriptomic, epigenetic, and proteomic characterization of these neoplasms. In this review, we summarize the available molecular information pertaining the oncogenesis of PT.


Assuntos
Adenoma , Neoplasias Hipofisárias , Masculino , Gravidez , Humanos , Feminino , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Proteômica , Adenoma/genética , Adenoma/patologia , Genômica , Hormônio Adrenocorticotrópico/genética , Hormônio Adrenocorticotrópico/metabolismo , Perfilação da Expressão Gênica , Epigênese Genética
2.
J Clin Endocrinol Metab ; 108(6): 1452-1463, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36504388

RESUMO

OBJECTIVE: To explore pituitary tumors by methylome and transcriptome signatures in a heterogeneous ethnic population. METHODS: In this retrospective cross-sectional study, clinicopathological features, methylome, and transcriptome were evaluated in pituitary tumors from 77 patients (61% women, age 12-72 years) followed due to functioning (FPT: GH-secreting n = 18, ACTH-secreting n = 14) and nonfunctioning pituitary tumors (NFPT, n = 45) at Ribeirao Preto Medical School, University of São Paulo. RESULTS: Unsupervised hierarchical clustering analysis (UHCA) of methylome (n = 77) and transcriptome (n = 65 out of 77) revealed 3 clusters each: one enriched by FPT, one by NFPT, and a third by ACTH-secreting and NFPT. Comparison between each omics-derived clusters identified 3568 and 5994 differentially methylated and expressed genes, respectively, which were associated with each other, with tumor clinical presentation, and with 2017 and 2022 WHO classifications. UHCA considering 11 transcripts related to pituitary development/differentiation also supported 3 clusters: POU1F1-driven somatotroph, TBX19-driven corticotroph, and NR5A1-driven gonadotroph adenomas, with rare exceptions (NR5A1 expressed in few GH-secreting and corticotroph silent adenomas; POU1F1 in few ACTH-secreting adenomas; and TBX19 in few NFPTs). CONCLUSION: This large heterogenic ethnic Brazilian cohort confirms that integrated methylome and transcriptome signatures classify FPT and NFPT, which are associated with clinical presentation and tumor invasiveness. Moreover, the cluster NFPT/ACTH-secreting adenomas raises interest regarding tumor heterogeneity, supporting the challenge raised by the 2017 and 2022 WHO definition regarding the discrepancy, in rare cases, between clinical presentation and pituitary lineage markers. Finally, making our data publicly available enables further studies to validate genes/pathways involved in pituitary tumor pathogenesis and prognosis.


Assuntos
Adenoma Hipofisário Secretor de ACT , Adenoma , Neoplasias Hipofisárias , Humanos , Feminino , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Adenoma/genética , Adenoma/patologia , Epigenoma , Transcriptoma , Estudos Retrospectivos , Estudos Transversais , Adenoma Hipofisário Secretor de ACT/genética , Hormônio Adrenocorticotrópico/genética
3.
BMC Med Genomics ; 15(1): 52, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260162

RESUMO

BACKGROUND: Pituitary adenomas (PA) are the second most common intracranial tumors and are classified according to hormone they produce, and the transcription factors they express. The majority of PA occur sporadically, and their molecular pathogenesis is incompletely understood. METHODS: Here we performed transcriptome and proteome analysis of tumors derived from POU1F1 (GH-, TSH-, and PRL-tumors, N = 16), NR5A1 (gonadotropes and null cells adenomas, n = 17) and TBX19 (ACTH-tumors, n = 6) lineages as well as from silent ACTH-tumors (n = 3) to determine expression of kinases, cyclins, CDKs and CDK inhibitors. RESULTS: The expression profiles of genes encoding kinases were distinctive for each of the three PA lineage: NR5A1-derived tumors showed upregulation of ETNK2 and PIK3C2G and alterations in MAPK, ErbB and RAS signaling, POU1F1-derived adenomas showed upregulation of PIP5K1B and NEK10 and alterations in phosphatidylinositol, insulin and phospholipase D signaling pathways and TBX19-derived adenomas showed upregulation of MERTK and STK17B and alterations in VEGFA-VEGFR, EGF-EGFR and Insulin signaling pathways. In contrast, the expression of the different genes encoding cyclins, CDK and CDK inhibitors among NR5A1-, POU1F1- and TBX19-adenomas showed only subtle differences. CDK9 and CDK18 were upregulated in NR5A1-adenomas, whereas CDK4 and CDK7 were upregulated in POUF1-adenomas. CONCLUSIONS: The kinome of PA clusters these lesions into three distinct groups according to the transcription factor that drives their terminal differentiation. And these complexes could be harnessed as molecular therapy targets.


Assuntos
Adenoma , Neoplasias Hipofisárias , Adenoma/metabolismo , Hormônio Adrenocorticotrópico/genética , Proteínas Reguladoras de Apoptose/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Humanos , Insulina , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Proteínas Serina-Treonina Quinases , Fatores de Transcrição/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA