Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 22(15): 3838-49, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25017625

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC50=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC50=21.1 µM), selectivity over butyrylcholinesterase (BChE) (IC50=171.1 µM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC50 value of 3.2 µM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic.


Assuntos
Inibidores da Colinesterase/síntese química , Diterpenos/síntese química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Cristalografia por Raios X , Diterpenos/química , Diterpenos/metabolismo , Grindelia/química , Grindelia/metabolismo , Humanos , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular
2.
Ann Bot ; 106(2): 297-307, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20519238

RESUMO

BACKGROUND AND AIMS: The growth-differentiation balance hypothesis (GDBH) states that there is a physiological trade-off between growth and secondary metabolism and predicts a parabolic effect of resource availability (such as water or nutrients) on secondary metabolite production. To test this hypothesis, the response of six Patagonian Monte species (Jarava speciosa, Grindelia chiloensis, Prosopis alpataco, Bougainvillea spinosa, Chuquiraga erinacea and Larrea divaricata) were investigated in terms of total biomass and resource allocation patterns in response to a water gradient. METHODS: One-month-old seedlings were subjected to five water supply regimes (expressed as percentage dry soil weight: 13 %, 11 %, 9 %, 7 % or 5 % - field water capacity being 15 %). After 150 d, plants were harvested, oven-dried and partitioned into root, stem and leaf. Allometric analysis was used to correct for size differences in dry matter partitioning. Determinations of total phenolics (TP), condensed tannins (CT), nitrogen (N) and total non-structural carbohydrates (TNC) concentrations were done on each fraction. Based on concentrations and biomass data, contents of TP and CT were estimated for whole plants, and graphical vector analysis was applied to interpret drought effect. KEY RESULTS: Four species (J. speciosa, G. chiloensis, P. alpataco and B. spinosa) showed a decrease in total biomass in the 5 % water supply regime. Differences in dry matter partitioning among treatments were mainly due to size variation. Concentrations of TP, CT, N and TNC varied little and the effect of drought on contents of TP and CT was not adequately predicted by the GDBH, except for G. chiloensis. CONCLUSIONS: Water stress affected growth-related processes (i.e. reduced total biomass) rather than defence-related secondary metabolism or allocation to different organs in juvenile plants. Therefore, the results suggest that application of the GDBH to plants experiencing drought-stress should be done with caution, at least for Patagonian Monte species.


Assuntos
Biomassa , Carboidratos , Secas , Grindelia/crescimento & desenvolvimento , Grindelia/metabolismo , Larrea/crescimento & desenvolvimento , Larrea/metabolismo , Nitrogênio/metabolismo , Nyctaginaceae/crescimento & desenvolvimento , Nyctaginaceae/metabolismo , Fenóis/metabolismo , Prosopis/crescimento & desenvolvimento , Prosopis/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA