Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560043

RESUMO

Chagas disease, caused by Trypanosoma cruzi (T. cruzi), affects nearly eight million people worldwide. There are currently only limited treatment options, which cause several side effects and have drug resistance. Thus, there is a great need for a novel, improved Chagas treatment. Bifunctional enzyme dihydrofolate reductase-thymidylate synthase (DHFR-TS) has emerged as a promising pharmacological target. Moreover, some human dihydrofolate reductase (HsDHFR) inhibitors such as trimetrexate also inhibit T. cruzi DHFR-TS (TcDHFR-TS). These compounds serve as a starting point and a reference in a screening campaign to search for new TcDHFR-TS inhibitors. In this paper, a novel virtual screening approach was developed that combines classical docking with protein-ligand interaction profiling to identify drug repositioning opportunities against T. cruzi infection. In this approach, some food and drug administration (FDA)-approved drugs that were predicted to bind with high affinity to TcDHFR-TS and whose predicted molecular interactions are conserved among known inhibitors were selected. Overall, ten putative TcDHFR-TS inhibitors were identified. These exhibited a similar interaction profile and a higher computed binding affinity, compared to trimetrexate. Nilotinib, glipizide, glyburide and gliquidone were tested on T. cruzi epimastigotes and showed growth inhibitory activity in the micromolar range. Therefore, these compounds could lead to the development of new treatment options for Chagas disease.


Assuntos
Doença de Chagas/enzimologia , Antagonistas do Ácido Fólico/farmacologia , Tripanossomicidas/farmacologia , Doença de Chagas/tratamento farmacológico , Simulação por Computador , Reposicionamento de Medicamentos , Antagonistas do Ácido Fólico/química , Glipizida/química , Glipizida/farmacologia , Glibureto/química , Glibureto/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos
2.
Photochem Photobiol ; 94(6): 1151-1158, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30066952

RESUMO

Reactive oxygen species (ROS) have been described in their double physiological function, helping in the maintenance of health as well as contributing to oxidative stress. Diabetes mellitus is a chronical disease nearly related to oxidative stress, whose treatment (in type II variant) consists in the administration of antidiabetic compounds (Andb) such as Gliclazide (Gli) and Glipizide (Glip). In this context, as Andb may be exposed to high ROS concentrations in diabetic patients, we have studied the potential ROS-mediated degradation of Gli and Glip through photosensitized processes, in the presence of Riboflavin (Rf) vitamin. We found that singlet oxygen (O2 (1 ∆g )) participated in the Rf-sensitized photodegradation of both Andb, and also superoxide radical anion in the case of Gli. Two principal products derived from O2 (1 ∆g )-mediated degradation of Gli were identified and their chemical structures characterized, through HPLC mass spectrometry. O2 (1 ∆g )-mediated degradation products and their toxicity was assayed on Vero cell line. These studies demonstrated that neither Gli nor its photoproducts caused cytotoxic effect under the experimental conditions assayed. Our results show strong evidences of ROS-mediated Andb degradation, which may involve the reduction or loss of their therapeutic action, as well as potential cytotoxicity derived from their oxidation products.


Assuntos
Gliclazida/química , Glipizida/química , Hipoglicemiantes/química , Fármacos Fotossensibilizantes/química , Riboflavina/química , Oxigênio Singlete/química , Superóxidos/química , Animais , Biotransformação/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/tratamento farmacológico , Gliclazida/metabolismo , Gliclazida/farmacologia , Glipizida/metabolismo , Glipizida/farmacologia , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Cinética , Luz , Oxirredução , Fotólise , Fármacos Fotossensibilizantes/metabolismo , Riboflavina/metabolismo , Oxigênio Singlete/metabolismo , Soluções , Espectrometria de Fluorescência , Superóxidos/metabolismo , Células Vero
3.
Braz. j. pharm. sci ; 46(2): 213-218, Apr.-June 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-564887

RESUMO

OBJECTIVES: The aim of the present investigation was to form matrix patches with ethyl cellulose (EC) as the base polymer, polyvinyl pyrrolidone (PVP) as the copolymer, plasticizer with dibutyl phthalate (DBP) or acetyl tributyl citrate (ATBC) and the drug glipizide (gz) by the solvent casting method. Physicochemical properties of the patches and in vitro drug release were determined in a modified Keshary-chien diffusion cell to optimize the patch formulations with the help of experimental data and figures for further studies. TECHNIQUES: EC and PVP of different proportions with different weight percentages of either DBP or ATBC and a fixed amount of glipizide were taken for matrix patch formations. The dried patches were used for measuring their drug contents as well as their thicknesses, tensile strengths, moisture contents and water absorption amounts in percentage. In vitro release amounts at different intervals were measured by UV-spectrophotometer. RESULTS: Drug contents varied from 96 - 99 percent. Thickness and tensile strength varied due to weight variation of the ingredients in the matrix patches. Moisture content and water absorption in wt percent were greater for the patches containing higher amount of PVP due to its hydrophilic nature. Variations in drug release were observed among various formulations. It was found that all of the releases followed diffusion controlled zero order kinetics. Two DBP patches yielded better and more adequate release. CONCLUSIONS: The two formulations with DBP were the preferred choice for making matrix patches for further studies.


O objetivo da presente pesquisa foi formar matrizes para bandagens de liberação transdérmica com etilcelulose (EC) como polímero base, polivinilpirrolidona (PVP), como copolímero, plastificante com ftalato de dibutila (DBP) ou citrato de tributilacetila (ATBC) e o fármaco glipizida (gz) pelo método de evaporação do solvente (moldagem com solvente). As propriedades físico-químicas das bandagens e a liberação do fármaco in vitro na célula de difusão de Keshary-chien modificada foram determinadas para aperfeiçoar as formulações das bandagens com o auxílio de dados experimentais e figuras para estudos posteriores. EC e PVP em diferentes proporções com porcentagens diferentes de massa tanto de DBP quanto de ATBC e quantidade fixa de glipizida foram utilizadas como matrizes para a formação de bandagens de liberação transdérmica. As bandagens secas foram empregadas para medir seus conteúdos em fármaco e, também, a sua espessura, resistência à tensão, conteúdos de umidade e porcentagem de absorção de água. As quantidades liberadas in vitro em diferentes intervalos de tempo foram medidas por espectrofotômetro de UV. Os conteúdos de fármaco variaram de 96 a 99 por cento. A espessura e a resistência à ruptura variaram devido à variação de massa dos componentes da matriz das bandagens. O conteúdo de umidade e a água absorvida, em porcentagem de massa, foram maiores para as bandagens que continham grandes quantidades de PVP devido à sua natureza hidrofílica. As variações na liberação de fármaco foram observadas entre as várias formulações. Todas as liberações seguiram a cinética de difusão controlada de ordem zero. Duas bandagens DBP resultaram em melhor e mais adequada liberação. As duas formulações com DBP foram escolhidas para a preparação de matriz de bandagens para estudos posteriores.


Assuntos
Sistemas de Liberação de Medicamentos , Glipizida/farmacocinética , Glipizida/química , Fenômenos Químicos , Doença Crônica , Diabetes Mellitus , Doenças Metabólicas
4.
P R Health Sci J ; 20(1): 25-30, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11394213

RESUMO

The objective of this research was to use the natural polymer Carrageenan to obtain controlled release spheres loaded with glipizide using the cross-linking technique. The effect of polymer level and drug load were investigated. The drug was dispersed in Carrageenan solution and the dispersion was dropped by a device containing 3 disposable syringes into cross-linking solution containing 3% calcium chloride. After 15 minutes residence time, the spheres were collected by decantation and dried in hot air oven at 38 degrees C +/- 2 degrees C for 24 hours. The dried spheres were successfully compacted into tablets using rotary Manesty B-3B machine equipped with 12/32 inches round flat face punches, target tablet weight was 400 mg +/- 5%. As the polymer level was increased in the sphere formulation, the drug release rate was increased. However, as the drug level was increased in the sphere formulation, the release rate was decreased. This trend was also true for tablets compacted from spheres. The scanning electron microscope photographs supported the dissolution data. More cracks and rough surface were observed in tablets compacted from spheres containing high polymer level and low drug level.


Assuntos
Carragenina/química , Preparações de Ação Retardada/química , Glipizida/química , Hipoglicemiantes/química , Portadores de Fármacos , Composição de Medicamentos , Humanos
5.
P R Health Sci J ; 20(1): 31-4, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11394214

RESUMO

The objective of this research was to investigate the effects of hydrogen ion concentration, drug concentration and ionic strength on the binding affinity of glipizide to albumin protein. Different buffer solutions of different pH values (pH 6.7, 7.5 and 8.5), different drug concentrations (2.45 mg, 4.82 mg and 9.42 mg), and phosphate buffer solutions pH 7.5 of different ionic strength (0.1, 0.4 and 1.0) were prepared. The effects of pH, drug concentration and ionic strength on the amount of glipizide bounded to 0.25 g bovine albumin was investigated. As the pH of the solution was increased from pH 6.4 to pH 8.5, milligrams drug bounded to gram protein (r value) decreased from 8.2 mg to 3.84 mg/g protein. Also as the ionic strength of the solution was increased from 0.1 to 1.0, the r value decreased from 10.76 mg to 3.96 mg/g protein. However, the r value did not change significantly with increasing of drug from 2.45 mg to 9.42 mg/25 ml. The r value was 7.36 mg/g protein when concentration of the drug was 2.45 mg/25 ml and 7.4 mg/g protein when the concentration of the drug was 9.42 mg/25 ml. This study demonstrated that factors such as high pH and high ionic strength can alter drug-protein binding and consequently increase free drug in plasma and increase bioavailability of slightly water insoluble drug such as antidiabetic drugs.


Assuntos
Glipizida/metabolismo , Hipoglicemiantes/metabolismo , Soroalbumina Bovina/metabolismo , Diálise , Relação Dose-Resposta a Droga , Glipizida/química , Concentração de Íons de Hidrogênio , Hipoglicemiantes/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA