Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.402
Filtrar
1.
Front Immunol ; 15: 1455238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355243

RESUMO

Tertiary lymphoid structures (TLSs) are formed in tissues targeted by chronic inflammation processes, such as infection and autoimmunity. In Sjögren's disease, the organization of immune cells into TLS is an important part of disease progression. Here, we investigated the dynamics of tissue resident macrophages in the induction and expansion of salivary gland TLS. We induced Sjögren's disease by cannulation of the submandibular glands of C57BL/6J mice with LucAdV5. In salivary gland tissues from these mice, we analyzed the different macrophage populations prior to cannulation on day 0 and on day 2, 5, 8, 16 and 23 post-infection using multicolored flow cytometry, mRNA gene analysis, and histological evaluation of tissue specific macrophages. The histological localization of macrophages in the LucAdV5 induced inflamed salivary glands was compared to salivary glands of NZBW/F1 lupus prone mice, a spontaneous mouse model of Sjögren's disease. The evaluation of the dynamics and changes in macrophage phenotype revealed that the podoplanin (PDPN) expressing CX3CR1+ macrophage population was increased in the salivary gland tissue during LucAdV5 induced inflammation. This PDPN+ CX3CR1+ macrophage population was, together with PDPN+CD206+ macrophages, observed to be localized in the parenchyma during the acute inflammation phase as well as surrounding the TLS structure in the later stages of inflammation. This suggests a dual role of tissue resident macrophages, contributing to both proinflammatory and anti-inflammatory processes, as well as their possible interactions with other immune cells within the inflamed tissue. These macrophages may be involved with lymphoid neogenesis, which is associated with disease severity and progression. In conclusion, our study substantiates the involvement of proinflammatory and regulatory macrophages in autoimmune pathology and underlines the possible multifaceted functions of macrophages in lymphoid cell organization.


Assuntos
Modelos Animais de Doenças , Macrófagos , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Síndrome de Sjogren , Estruturas Linfoides Terciárias , Animais , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia , Síndrome de Sjogren/metabolismo , Camundongos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Feminino , Glândulas Salivares/imunologia , Glândulas Salivares/patologia , Glândulas Salivares/metabolismo
2.
Clin Transl Med ; 14(10): e70026, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39350473

RESUMO

BACKGROUND: The immunoglobulin superfamily protein Trem2 (triggering receptor expressed on myeloid cells 2) is primarily expressed on myeloid cells where it functions to regulate macrophage-related immune response induction. While macrophages are essential mediators of diabetic wound healing, the specific regulatory role that Trem2 plays in this setting remains to be established. OBJECTIVE: This study was developed to explore the potential importance of Trem2 signalling in diabetic wound healing and to clarify the underlying mechanisms through which it functions. METHODS AND RESULTS: Following wound induction, diabetic model mice exhibited pronounced upregulation of Trem2 expression, which was primarily evident in macrophages. No cutaneous defects were evident in mice bearing a macrophage-specific knockout of Trem2 (T2-cKO), but they induced more pronounced inflammatory responses and failed to effectively repair cutaneous wounds, with lower levels of neovascularization, slower rates of wound closure, decreased collagen deposition following wounding. Mechanistically, we showed that interleukin (IL)-4 binds directly to Trem2, inactivating MAPK/AP-1 signalling to suppress the expression of inflammatory and chemoattractant factors. Co-culture of fibroblasts and macrophages showed that macrophages from T2-cKO mice suppressed the in vitro activation and proliferation of dermal fibroblasts through upregulation of leukaemia inhibitory factor (Lif). Injecting soluble Trem2 in vivo was also sufficient to significantly curtail inflammatory responses and to promote diabetic wound healing. CONCLUSIONS: These analyses offer novel insight into the role of IL-4/Trem2 signalling as a mediator of myeloid cell-fibroblast crosstalk that may represent a viable therapeutic target for efforts to enhance diabetic wound healing.


Assuntos
Interleucina-4 , Glicoproteínas de Membrana , Receptores Imunológicos , Cicatrização , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Cicatrização/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Interleucina-4/metabolismo , Interleucina-4/genética , Camundongos Knockout , Modelos Animais de Doenças , Diabetes Mellitus Experimental/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL
3.
J Alzheimers Dis ; 101(2): 693-704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39240638

RESUMO

Background: Bridging integrator 1 (BIN1) gene polymorphism has been reported to play a role in the pathological processes of Alzheimer's disease (AD). Objective: To explore the association of BIN1 loci with neuroinflammation and AD pathology. Methods: Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 495) was the discovery cohort, and Chinese Alzheimer's Biomarker and LifestylE (CABLE, N = 619) study was used to replicate the results. Two BIN1 gene polymorphism (rs7561528 and rs744373) were included in the analysis. Multiple linear regression model and causal mediation analysis conducted through 10,000 bootstrapped iterations were used to examine the BIN1 loci relationship with cerebrospinal fluid (CSF) AD biomarkers and alternative biomarker of microglial activation microglia-soluble triggering receptor expressed on myeloid cells 2 (sTREM2). Results: In ADNI database, we found a significant association between BIN1 loci (rs7561528 and rs744373) and levels of CSF phosphorylated-tau (P-tau) (pc = 0.017; 0.010, respectively) and total-tau (T-tau) (pc = 0.011; 0.013, respectively). The BIN1 loci were also correlated with CSF sTREM2 levels (pc = 0.010; 0.008, respectively). Mediation analysis demonstrated that CSF sTREM2 partially mediated the association of BIN1 loci with P-tau (Proportion of rs7561528 : 20.8%; Proportion of rs744373 : 24.8%) and T-tau (Proportion of rs7561528 : 36.5%; Proportion of rs744373 : 43.9%). The analysis in CABLE study replicated the mediation role of rs7561528. Conclusions: This study demonstrated the correlation between BIN1 loci and CSF AD biomarkers as well as microglia biomarkers. Additionally, the link between BIN1 loci and tau pathology was partially mediated by CSF sTREM2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer , Biomarcadores , Glicoproteínas de Membrana , Receptores Imunológicos , Proteínas Supressoras de Tumor , Proteínas tau , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Feminino , Proteínas Supressoras de Tumor/genética , Masculino , Idoso , Receptores Imunológicos/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Polimorfismo de Nucleotídeo Único/genética , Idoso de 80 Anos ou mais , Proteínas Nucleares
4.
Acta Neuropathol Commun ; 12(1): 154, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300502

RESUMO

Aging is the greatest known risk factor for most neurodegenerative diseases. Myelin degeneration is an early pathological indicator of these diseases and a normal part of aging; albeit, to a lesser extent. Despite this, little is known about the contribution of age-related myelin degeneration on neurodegenerative disease. Microglia participate in modulating white matter events from demyelination to remyelination, including regulation of (de)myelination by the microglial innate immune receptor triggering receptor expressed on myeloid cells 2 (TREM2). Here, we demonstrate Trem2-deficiency aggravates and accelerates age-related myelin degeneration in the striatum. We show TREM2 is necessary for remyelination by recruiting reparative glia and mediating signaling that promotes OPC differentiation/maturation. In response to demyelination, TREM2 is required for phagocytosis of large volumes of myelin debris. In addition to lysosomal regulation, we show TREM2 can modify the ER stress response, even prior to overt myelin debris, that prevents lipid accumulation and microglial dysfunction. These data support a role for Trem2-dependent interactions in age-related myelin degeneration and suggest a basis for how early dysfunctional microglia could contribute to disease pathology through insufficent repair, defective phagocytosis, and the ER stress response.


Assuntos
Envelhecimento , Glicoproteínas de Membrana , Microglia , Bainha de Mielina , Receptores Imunológicos , Animais , Camundongos , Envelhecimento/patologia , Envelhecimento/metabolismo , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/genética , Estresse do Retículo Endoplasmático/fisiologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Fagocitose/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/deficiência , Remielinização/fisiologia , Masculino , Feminino
5.
J Int Med Res ; 52(9): 3000605241281322, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39340251

RESUMO

OBJECTIVE: Previous research has shown that the role of neurotrophic receptor tyrosine kinase 2 (NTRK2) in breast cancer (BRCA) remains ambiguous. To help elucidate this, we conducted a retrospective study to investigate the relationship between NTRK2 protein expression and BRCA. METHODS: The prognostic significance of NTRK2 protein expression patterns was assessed by performing immunohistochemistry assays on 131 BRCA tissues and 56 adjacent normal tissues in a retrospective study. Furthermore, the sensitivity to chemotherapeutic drugs was quantified by "pRRophetic" and the sensitivity to immunotherapy was estimated using The Cancer Immunome Atlas website. RESULTS: NTRK2 protein was expressed at significantly higher levels in BRCA samples compared with normal tissues. The data indicated that NTRK2 expression is an independent risk factor for BRCA patient prognosis. Additionally, the high NTRK2 group exhibited increased sensitivity to certain chemotherapy drugs and achieved higher scores for immune checkpoint blockade therapy compared with the low NTRK2 group. CONCLUSIONS: Our study demonstrated that higher NTRK2 protein expression is related to a less favorable prognosis in BRCA patients, as well as to enhanced sensitivity to specific chemotherapy and immunotherapy drugs.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , Adulto , Idoso , Imuno-Histoquímica , Regulação Neoplásica da Expressão Gênica , Antineoplásicos/uso terapêutico
6.
Nat Commun ; 15(1): 8024, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271711

RESUMO

The conditions supporting the generation of microglia-like cells in the central nervous system (CNS) after transplantation of hematopoietic stem/progenitor cells (HSPC) have been studied to advance the treatment of neurodegenerative disorders. Here, we explored the transplantation efficacy of different cell subsets and delivery routes with the goal of favoring the establishment of a stable and exclusive engraftment of HSPCs and their progeny in the CNS of female mice. In this setting, we show that the CNS environment drives the expansion, distribution and myeloid differentiation of the locally transplanted cells towards a microglia-like phenotype. Intra-CNS transplantation of HSPCs engineered to overexpress TREM2 decreased neuroinflammation, Aß aggregation and improved memory in 5xFAD female mice. Our proof of concept study demonstrates the therapeutic potential of HSPC gene therapy for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Camundongos Transgênicos , Microglia , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Terapia Genética/métodos , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Camundongos , Microglia/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Peptídeos beta-Amiloides/metabolismo , Diferenciação Celular , Humanos , Camundongos Endogâmicos C57BL
7.
Proc Natl Acad Sci U S A ; 121(39): e2408078121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39292744

RESUMO

The Pentamer complex of Human Cytomegalovirus (HCMV) consists of the viral glycoproteins gH, gL, UL128, UL130, and UL131 and is incorporated into infectious virions. HCMV strains propagated extensively in vitro in fibroblasts carry UL128, UL130, or UL131 alleles that do not make a functional complex and thus lack Pentamer function. Adding functional Pentamer to such strains decreases virus growth in fibroblasts. Here, we show that the Pentamer inhibits productive HCMV replication in fibroblasts by repressing viral Immediate Early (IE) transcription. We show that ectopic expression of the viral IE1 protein, a target of Pentamer-mediated transcriptional repression, complements the growth defect of a Pentamer-positive virus. Furthermore, we show that the Pentamer also represses viral IE transcription in cell types where HCMV in vitro latency is studied. Finally, we identify UL130 as a functional subunit of the Pentamer for IE transcriptional repression and demonstrate that cyclic AMP Response Element (CRE) and NFkB sites within the Major Immediate Early Promoter that drives IE1 transcription contribute to this repression. We conclude that the HCMV Pentamer represses viral IE transcription.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Fibroblastos , Proteínas Imediatamente Precoces , Transcrição Gênica , Proteínas do Envelope Viral , Humanos , Citomegalovirus/genética , Citomegalovirus/fisiologia , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Fibroblastos/virologia , Fibroblastos/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Regulação Viral da Expressão Gênica , Replicação Viral/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Genes Precoces , Regiões Promotoras Genéticas
8.
PLoS Pathog ; 20(9): e1012543, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39250507

RESUMO

Decidual macrophages residing at the maternal-fetal interface have been recognized as pivotal factors for maintaining normal pregnancy; however, they are also key target cells of Toxoplasma gondii (T. gondii) in the pathology of T. gondii-induced adverse pregnancy. Trem2, as a functional receptor on macrophage surface, recognizes and binds various kinds of pathogens. The role and underlying mechanism of Trem2 in T. gondii infection remain elusive. In the present study, we found that T. gondii infection downregulated Trem2 expression and that Trem2-/- mice exhibited more severe adverse pregnancy outcomes than wildtype mice. We also demonstrated that T. gondii infection resulted in increased decidual macrophages, which were significantly reduced in the Trem2-/- pregnant mouse model as compared to wildtype control animals. We further described the inhibited proliferation, migration, and invasion functions of trophoblast cell by T. gondii antigens through macrophages as an "intermediate bridge", while this inhibition can be rescued by Trem2 agonist HSP60. Concurrently, Trem2 deficiency in bone marrow-derived macrophages (BMDMs) heightened the inhibitory effect of TgAg on the migration and invasion of trophoblast cells, accompanied by higher pro-inflammatory factors (IL-1ß, IL-6 and TNF-α) but a lower chemokine (CXCL1) in T. gondii antigens-treated BMDMs. Furthermore, compelling evidence from animal models and in vitro cell experiments suggests that T. gondii inhibits the Trem2-Syk-PI3K signaling pathway, leading to impaired function of decidual macrophages. Therefore, our findings highlight Trem2 signaling as an essential pathway by which decidual macrophages respond to T. gondii infection, suggesting Trem2 as a crucial sensor of decidual macrophages and potential therapeutic target in the pathology of T. gondii-induced adverse pregnancy.


Assuntos
Decídua , Macrófagos , Glicoproteínas de Membrana , Transdução de Sinais , Toxoplasma , Toxoplasmose , Animais , Feminino , Camundongos , Gravidez , Decídua/imunologia , Decídua/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/parasitologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Complicações Parasitárias na Gravidez/imunologia , Complicações Parasitárias na Gravidez/parasitologia , Resultado da Gravidez , Receptores Imunológicos/metabolismo , Quinase Syk/metabolismo , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Trofoblastos/parasitologia , Trofoblastos/metabolismo , Trofoblastos/imunologia
9.
Nat Commun ; 15(1): 8304, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333474

RESUMO

CD38 has emerged as a potential therapeutic target for patients with systemic lupus erythematosus (SLE) but it is not known whether CD38 alters CD4+ T cell function. Using primary human T cells and CD38-sufficient and CD38-deficient Jurkat T cells, we demonstrate that CD38 shifts the T cell lipid profile of gangliosides from GM3 to GM2 by upregulating B4GALNT1 in a Sirtuin 1-dependent manner. Enhanced expression of GM2 causes ER stress by enhancing Ca2+ flux through the PLCγ1-IP3 pathway. Interestingly, correction of the calcium overload by an IP3 receptor inhibitor, but not by a store-operated calcium entry (SOCE) inhibitor, improves IL-2 production by CD4+ T cells in SLE. This study demonstrates that CD38 affects calcium homeostasis in CD4+ T cells by controlling cell membrane lipid composition that results in suppressed IL-2 production. CD38 inhibition with biologics or small drugs should be expected to benefit patients with SLE.


Assuntos
ADP-Ribosil Ciclase 1 , Linfócitos T CD4-Positivos , Cálcio , Membrana Celular , Interleucina-2 , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/genética , Interleucina-2/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Cálcio/metabolismo , Células Jurkat , Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Fosfolipase C gama/metabolismo , Fosfolipase C gama/genética , Feminino
10.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273614

RESUMO

Alzheimer's disease is the most common form of dementia, characterized by the pathological accumulation of amyloid-beta (Aß) plaques and tau neurofibrillary tangles. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized as playing a central role in Aß clearance and microglia activation in AD. The TREM2 gene transcriptional product is alternatively spliced to produce three different protein isoforms. The canonical TREM2 isoform binds to DAP12 to activate downstream pathways. However, little is known about the function or interaction partners of the alternative TREM2 isoforms. The present study utilized a computational approach in a systematic search for new interaction partners of the TREM2 isoforms by integrating several state-of-the-art structural bioinformatics tools from initial large-scale screening to one-on-one corroborative modeling and eventual all-atom visualization. CD9, a cell surface glycoprotein involved in cell-cell adhesion and migration, was identified as a new interaction partner for two TREM2 isoforms, and CALM, a calcium-binding protein involved in calcium signaling, was identified as an interaction partner for a third TREM2 isoform, highlighting the potential role of cell adhesion and calcium regulation in AD.


Assuntos
Processamento Alternativo , Doença de Alzheimer , Glicoproteínas de Membrana , Ligação Proteica , Isoformas de Proteínas , Receptores Imunológicos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Humanos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Biologia Computacional/métodos
11.
Cells ; 13(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39273077

RESUMO

Plastin-3 (PLS3) encodes T-plastin, an actin-bundling protein mediating the formation of actin filaments by which numerous cellular processes are regulated. Loss-of-function genetic defects in PLS3 are reported to cause X-linked osteoporosis and childhood-onset fractures. However, the molecular etiology of PLS3 remains elusive. Functional compensation by actin-bundling proteins ACTN1, ACTN4, and FSCN1 was investigated in zebrafish following morpholino-mediated pls3 knockdown. Primary dermal fibroblasts from six patients with a PLS3 variant were also used to examine expression of these proteins during osteogenic differentiation. In addition, Pls3 knockdown in the murine MLO-Y4 cell line was employed to provide insights in global gene expression. Our results showed that ACTN1 and ACTN4 can rescue the skeletal deformities in zebrafish after pls3 knockdown, but this was inadequate for FSCN1. Patients' fibroblasts showed the same osteogenic transdifferentiation ability as healthy donors. RNA-seq results showed differential expression in Wnt1, Nos1ap, and Myh3 after Pls3 knockdown in MLO-Y4 cells, which were also associated with the Wnt and Th17 cell differentiation pathways. Moreover, WNT2 was significantly increased in patient osteoblast-like cells compared to healthy donors. Altogether, our findings in different bone cell types indicate that the mechanism of PLS3-related pathology extends beyond actin-bundling proteins, implicating broader pathways of bone metabolism.


Assuntos
Diferenciação Celular , Glicoproteínas de Membrana , Proteínas dos Microfilamentos , Osteogênese , Peixe-Zebra , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Osteogênese/genética , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Fibroblastos/metabolismo , Osteoblastos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Técnicas de Silenciamento de Genes
12.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273091

RESUMO

Rabies is a fatal neurological infectious disease caused by rabies virus (RABV), which invades the central nervous system (CNS). RABV with varying virulence regulates chemokine expression, and the mechanisms of signaling pathway activation remains to be elucidated. The relationship between Toll-like receptors (TLRs) and immune response induced by RABV has not been fully clarified. Here, we investigated the role of TLR7 in the immune response induced by RABV, and one-way analysis of variance (ANOVA) was employed to evaluate the data. We found that different RABV strains (SC16, HN10, CVS-11) significantly increased CCL2, CXCL10 and IL-6 production. Blocking assays indicated that the TLR7 inhibitor reduced the expression of CCL2, CXCL10 and IL-6 (p < 0.01). The activation of the Myd88 pathway in BV-2 cells stimulated by RABV was TLR7-dependent, whereas the inhibition of Myd88 activity reduced the expression of CCL2, CXCL10 and IL-6 (p < 0.01). Meanwhile, the RABV stimulation of BV-2 cells resulted in TRL7-mediated activation of NF-κB and induced the nuclear translocation of NF-κB p65. CCL2, CXCL10 and IL-6 release was attenuated by the specific NF-κB inhibitor used (p < 0.01). The findings above demonstrate that RABV-induced expression of CCL2, CXCL10 and IL-6 involves Myd88 and NF-κB pathways via the TLR7 signal.


Assuntos
Fator 88 de Diferenciação Mieloide , NF-kappa B , Vírus da Raiva , Transdução de Sinais , Receptor 7 Toll-Like , Receptor 7 Toll-Like/metabolismo , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Vírus da Raiva/patogenicidade , Vírus da Raiva/imunologia , Camundongos , NF-kappa B/metabolismo , Linhagem Celular , Interleucina-6/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Raiva/virologia , Raiva/metabolismo , Raiva/imunologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Inflamação/metabolismo
13.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39273422

RESUMO

Alzheimer's disease (AD), the leading cause of dementia, is a multifactorial disease influenced by aging, genetics, and environmental factors. miRNAs are crucial regulators of gene expression and play significant roles in AD onset and progression. This exploratory study analyzed the expression levels of 28 genes and 5 miRNAs (miR-124-3p, miR-125b-5p, miR-21-5p, miR-146a-5p, and miR-155-5p) related to AD pathology and neuroimmune responses using RT-qPCR. Analyses were conducted in the prefrontal cortex (PFC) and the hippocampus (HPC) of the 5xFAD mouse AD model at 6 and 9 months old. Data highlighted upregulated genes encoding for glial fibrillary acidic protein (Gfap), triggering receptor expressed on myeloid cells (Trem2) and cystatin F (Cst7), in the 5xFAD mice at both regions and ages highlighting their roles as critical disease players and potential biomarkers. Overexpression of genes encoding for CCAAT enhancer-binding protein alpha (Cebpa) and myelin proteolipid protein (Plp) in the PFC, as well as for BCL2 apoptosis regulator (Bcl2) and purinergic receptor P2Y12 (P2yr12) in the HPC, together with upregulated microRNA(miR)-146a-5p in the PFC, prevailed in 9-month-old animals. miR-155 positively correlated with miR-146a and miR-21 in the PFC, and miR-125b positively correlated with miR-155, miR-21, while miR-146a in the HPC. Correlations between genes and miRNAs were dynamic, varying by genotype, region, and age, suggesting an intricate, disease-modulated interaction between miRNAs and target pathways. These findings contribute to our understanding of miRNAs as therapeutic targets for AD, given their multifaceted effects on neurons and glial cells.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Hipocampo , MicroRNAs , Neuroglia , Neurônios , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Neurônios/metabolismo , Neuroglia/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Regulação da Expressão Gênica , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Córtex Pré-Frontal/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Masculino
14.
Rev Argent Microbiol ; 56(3): 232-240, 2024.
Artigo em Espanhol | MEDLINE | ID: mdl-39218718

RESUMO

Lysinibacillus sphaericus is a bacterium that, along with Bacillus thuringiensis var. israelensis, is considered the best biological insecticide for controlling mosquito larvae and an eco-friendly alternative to chemical insecticides. It depends on peptidic molecules such as N-acetylglucosamine to obtain carbon sources and possesses a phosphotransferase system (PTS) for their incorporation. Some strains carry S-layer proteins, whose involvement in metal retention and larvicidal activity against disease-carrying mosquitoes has been demonstrated. Alterations in the amino sugar incorporation system could affect the protein profile and functionality. Strain ASB13052 and the isogenic mutant in the ptsH gene, which is predominant in the PTS signaling pathway, were used in this study. For the first time, the presence of N-glycosylated S-layer proteins was confirmed in both strains, with a variation in their molecular weight pattern depending on the growth phase. In the exponential phase, an S-layer protein greater than 130 kDa was found in the ptsH mutant, which was absent in the wild-type strain. The mutant strain exhibited altered and incomplete low quality sporulation processes. Hemolysis analysis, associated with larvicidal activity, showed that the ptsH mutant has higher lytic efficiency, correlating with the high molecular weight protein. The results allow us to propose the potential effects that arise as a result of the absence of amino sugar transport on hemolytic activity, S-layer isoforms, and the role of N-acetylglucosamine in larvicidal activity.


Assuntos
Acetilglucosamina , Bacillaceae , Glicoproteínas de Membrana , Esporos Bacterianos , Bacillaceae/genética , Bacillaceae/metabolismo , Acetilglucosamina/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Hemólise/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico
15.
Commun Biol ; 7(1): 1162, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289468

RESUMO

Toll-like receptor 7 (Tlr7) deficiency-accelerated severe COVID-19 is associated with reduced production of interferons (IFNs). However, the underlying mechanisms remain elusive. To address these questions, we utilize Tlr7 and Irf7 deficiency mice, single-cell RNA analysis together with bone marrow transplantation approaches. We demonstrate that at the early phase of infection, SARS-CoV-2 causes the upregulation of Tlr7, Irf7, and IFN pathways in the lungs of the infected mice. The deficiency of Tlr7 and Irf7 globally and/or in immune cells in mice increases the severity of COVID-19 via impaired IFN activation in both immune and/or non-immune cells, leading to increased lung viral loads. These effects are associated with reduced IFN alpha and gamma levels in the circulation. The deficiency of Tlr7 tends to cause the reduced production and nuclear translocation of interferon regulatory factor 7 (IRF7) in the lungs of the infected mice, indicative of reduced IRF7 activation. Despite higher amounts of lung viral antigen, Tlr7 or Irf7 deficiency resulted in substantially reduced production of antibodies against SARS-CoV-2, thereby delaying the viral clearance. These results highlight the importance of the activation of TLR7 and IRF7 leading to IFN production on the development of innate and adaptive immunity against COVID-19.


Assuntos
COVID-19 , Fator Regulador 7 de Interferon , Pulmão , Camundongos Knockout , SARS-CoV-2 , Receptor 7 Toll-Like , Animais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/metabolismo , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença , Carga Viral , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Animais de Doenças
16.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250533

RESUMO

The cell-intrinsic mechanisms underlying the decision of a stem/progenitor cell to either proliferate or differentiate remain incompletely understood. Here, we identify the transmembrane protein Lrig1 as a physiological homeostatic regulator of FGF2-driven proliferation and self-renewal of neural progenitors at early-to-mid embryonic stages of cortical development. We show that Lrig1 is expressed in cortical progenitors (CPs), and its ablation caused expansion and increased proliferation of radial/apical progenitors and of neurogenic transit-amplifying Tbr2+ intermediate progenitors. Notably, our findings identify a previously unreported EGF-independent mechanism through which Lrig1 negatively regulates neural progenitor proliferation by modulating the FGF2-induced IL6/Jak2/Stat3 pathway, a molecular cascade that plays a pivotal role in the generation and maintenance of CPs. Consistently, Lrig1 knockout mice showed a significant increase in the density of pyramidal glutamatergic neurons placed in superficial layers 2 and 3 of the postnatal neocortex. Together, these results support a model in which Lrig1 regulates cortical neurogenesis by influencing the cycling activity of a set of progenitors that are temporally specified to produce upper layer glutamatergic neurons.


Assuntos
Janus Quinase 2 , Glicoproteínas de Membrana , Camundongos Knockout , Células-Tronco Neurais , Neurogênese , Neurônios , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Janus Quinase 2/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Camundongos , Neurogênese/genética , Neurônios/metabolismo , Neurônios/citologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Proliferação de Células , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Diferenciação Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas do Tecido Nervoso
17.
J Natl Compr Canc Netw ; 22(7)2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39236755

RESUMO

Tissue-agnostic, molecularly targeted therapies are becoming increasingly common in cancer treatment. The molecular drivers of some classes and subclasses of tumors are rapidly being uncovered in an era of deep tumor sequencing occurring at the time of diagnosis. When and how targeted therapies should fit within up-front cytotoxic chemotherapy and radiation paradigms is yet to be determined, because many of them have been studied in single-arm studies in patients with relapsed or refractory cancer. Infant high-grade gliomas (HGGs) are biologically and clinically distinct from older child and adult HGGs, and are divided into 3 molecular subgroups. Group 1 infant HGGs are driven by receptor tyrosine kinase fusions, most commonly harboring an ALK, ROS1, NTRK, or MET fusion. Both larotrectinib and entrectinib are tropomyosin receptor kinase inhibitors with tissue-agnostic approvals for the treatment of patients with solid tumors harboring an NTRK fusion. This report discusses an 11-month-old female who presented with infantile spasms, found to have an unresectable, NTRK fusion-positive infant HGG. Larotrectinib was prescribed when the NTRK fusion was identified at diagnosis, and without additional intervention to date, the patient has continued with stable disease for >3 years. The only adverse event experienced was grade 1 aspartate transaminase and alanine transaminase elevations. The patient has a normal neurologic examination, is developing age-appropriately in all domains (gross motor, fine motor, cognitive, language, and social-emotional). She is no longer on antiseizure medications. To our knowledge, this is the first report of a patient with an infantile HGG receiving targeted therapy as first-line treatment with prolonged stable disease. A prospective study of larotrectinib in patients with newly diagnosed infant HGG is ongoing, and will hopefully help answer questions about durability of response, the need for additional therapies, and long-term toxicities seen with TRK inhibitors.


Assuntos
Glioma , Inibidores de Proteínas Quinases , Pirazóis , Pirimidinas , Receptor trkB , Humanos , Feminino , Lactente , Pirazóis/uso terapêutico , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Receptor trkB/genética , Receptor trkB/antagonistas & inibidores , Pirimidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Fusão Oncogênica/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Gradação de Tumores , Resultado do Tratamento , Glicoproteínas de Membrana/genética
18.
Commun Biol ; 7(1): 1175, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39294220

RESUMO

Biological studies of the determinants of Cryptosporidium infectivity are lacking despite the fact that cryptosporidiosis is a major public health problem. Recently, the 60-kDa glycoprotein (GP60) has received attention because of its high sequence polymorphism and association with host infectivity of isolates and protection against reinfection. However, studies of GP60 function have been hampered by its heavy O-linked glycosylation. Here, we used advanced genetic tools to investigate the processing, fate, and function of GP60. Endogenous gene tagging showed that the GP60 cleavage products, GP40 and GP15, are both highly expressed on the surface of sporozoites, merozoites and male gametes. During invasion, GP40 translocates to the apical end of the zoites and remains detectable at the parasite-host interface. Deletion of the signal peptide, GPI anchor, and GP15 sequences affects the membrane localization of GP40. Deletion of the GP60 gene significantly reduces parasite growth and severity of infection, and replacement of the GP60 gene with sequence from an avirulent isolate reduces the pathogenicity of a highly infective isolate. These results have revealed dynamic changes in GP60 expression during parasite development. They further suggest that GP60 is a key protein mediating host infectivity and pathogenicity.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Proteínas de Protozoários , Cryptosporidium parvum/genética , Cryptosporidium parvum/patogenicidade , Cryptosporidium parvum/metabolismo , Animais , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Criptosporidiose/parasitologia , Interações Hospedeiro-Parasita , Camundongos , Humanos , Esporozoítos/metabolismo , Esporozoítos/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
19.
Int Immunopharmacol ; 141: 112926, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39159559

RESUMO

The inflammatory response is a significant factor in acetaminophen (APAP)-induced acute liver injury. And it can be mediated by macrophages of different origins. However, whether Kupffer cells and mononuclear-derived macrophages play an injury or protective role in APAP hepatotoxicity is still unclear. In this study, C57/BL6N mice were performed to establish the APAP acute liver injury model. Intervention experiments were also carried out using clodronate liposomes or TREM2 knockout. We found that APAP overdose triggered the activation of inflammatory factors and enhanced the expression of the RIPK1-MLKL pathway in mice's livers. Moreover, our study showed that inflammation-related protein expression was increased after clodronate liposome administration or TREM2 knockout. The RIPK1-MLKL-mediated necroptosis was also significantly activated after the elimination of Kupffer cells or the inhibition of mononuclear-derived macrophages. More importantly, clodronate liposomes treatment and TREM2 deficiency all worsen APAP-induced liver damage in mice. In conclusion, the results indicate that Kupffer cells and mononuclear macrophages play a protective role in APAP-induced liver injury by regulating necroptosis. Therefore, macrophages hold as a potential therapeutic target for APAP-induced liver damage.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Células de Kupffer , Macrófagos , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Imunológicos , Animais , Células de Kupffer/metabolismo , Células de Kupffer/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Ácido Clodrônico/farmacologia , Fígado/patologia , Fígado/metabolismo , Fígado/imunologia , Fígado/efeitos dos fármacos , Necroptose , Lipossomos , Modelos Animais de Doenças , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais
20.
Virol J ; 21(1): 187, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148126

RESUMO

Enterovirus 71 (EV-71) has strong neurotropism, and it is the main pathogen causing severe hand, foot, and mouth disease (HFMD). In clinical observations, significant differences were observed in the severity and prognosis of HFMD among children who were also infected with EV-71. Genetic differences among individuals could be one of the important causes of differences in susceptibility to EV-71-induced HFMD. As P-selectin glycoprotein ligand-1 (PSGL-1) is an important receptor of EV-71, the correlation between single-nucleotide polymorphisms (SNPs) in PSGL-1 and the susceptibility to severe HFMD following EV-71 infection is worth studying. Given the role of PSGL-1 in immunity, the correlations between PSGL-1 SNPs and the immune status after EV-71 infection are also worth studying. Meanwhile, PSGL-1 variable number of tandem repeats (VNTR) represents a research hotspot in cardiovascular and cerebrovascular diseases, but PSGL-1 VNTR polymorphism has not been investigated in HFMD caused by EV-71 infection. In this study, specific gene fragments were amplified by polymerase chain reaction, and PSGL-1 VNTR sequences were genotyped using an automatic nucleic acid analyzer. The correlations of PSGL-1 VNTR polymorphism with the susceptibility to EV-71-associated severe HFMD and the post-infection immune status were analyzed. The PSGL-1 VNTR A allele was identified as a susceptible SNP for severe HFMD. The risk of severe HFMD was higher for AA + AB genotype carriers than for BB genotype carriers. The counts of peripheral blood lymphocyte subsets were lower in AA + AB genotype carries than in BB genotype carries. In conclusion, PSGL-1 VNTR polymorphism is associated with the susceptibility to EV-71-induced severe HFMD and the immune status after infection. PSGL-1 VNTR might play a certain role in the pathogenesis of severe cases.


Assuntos
Enterovirus Humano A , Predisposição Genética para Doença , Doença de Mão, Pé e Boca , Glicoproteínas de Membrana , Repetições Minissatélites , Humanos , Doença de Mão, Pé e Boca/genética , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/virologia , Glicoproteínas de Membrana/genética , Enterovirus Humano A/imunologia , Enterovirus Humano A/genética , Masculino , Feminino , Lactente , Repetições Minissatélites/genética , Pré-Escolar , Polimorfismo de Nucleotídeo Único , Genótipo , Criança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA