Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 994
Filtrar
1.
Metabolomics ; 20(5): 89, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095669

RESUMO

INTRODUCTION: Breeding for oil palm resistance against basal stem rot caused by Ganoderma boninense is challenging and time-consuming. Advanced oil palm gene pools are very limited, hence it is assumed that parental palms have experienced genetic drift and lost their resistance genes against Ganoderma. High-throughput selection criteria should be developed. Metabolomic analysis using 1H nuclear magnetic resonance (NMR) spectroscopy is easy, and the resulting metabolite can be used as a diagnostic tool for detecting disease in various host-pathogen combinations. OBJECTIVES: The objective of this study was to identify metabolite variations in Dura (D) and Pisifera (P) parental palms with different resistance levels against Ganoderma and moderately resistant DxP using 1H NMR analysis. METHODS: Leaf tissues of seven different oil palm categories consisting of: resistant, moderate, and susceptible Dura (D); moderate and susceptible Pisifera (P); resistant Tenera/Pisifera (T/P) parental palms; and moderately resistant DxP variety progenies, were sampled and their metabolites were determined using NMR spectroscopy. RESULTS: Twenty-nine types of metabolites were identified, and most of the metabolites fall in the monosaccharides, amino acids, and fatty acids compound classes. The PCA, PLS-DA, and heatmap multivariate analysis indicated two identified groups of resistance based on their metabolites. The first group consisted of resistant T/P, moderate P, resistant D, and moderately resistant DxP. In contrast, the second group consisted of susceptible P, moderate D, and susceptible D. Glycerol and ascorbic acid were detected as biomarker candidates by OPLS-DA to differentiate moderately resistant DxP from susceptible D and P. The pathway analysis suggested that glycine, serine, and threonine metabolism and taurine and hypotaurine metabolism were involved in the oil palm defense mechanism against Ganoderma. CONCLUSION: A metabolomic study with 1H NMR was able to describe the metabolite composition that could differentiate the characteristics of oil palm resistance against basal stem rot (BSR) caused by G. boninense. These metabolites revealed in this study have enormous potential to become support tools for breeding new oil palm varieties with higher resistance against BSR.


Assuntos
Arecaceae , Resistência à Doença , Ganoderma , Metabolômica , Doenças das Plantas , Folhas de Planta , Ganoderma/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Doenças das Plantas/microbiologia , Arecaceae/metabolismo , Arecaceae/química , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Metaboloma
2.
Int J Med Mushrooms ; 26(10): 55-67, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171631

RESUMO

Solid-state fermentation of cereals with edible fungi is a promising strategy for producing functional flours. Hypothetically, the nutritional and functional properties of these flours could be modulated by manipulating substrate composition, fungal species, and incubation conditions. This article reports the variation over time in nutritional, polyphenol, and triterpene contents, as well as the antioxidant activity of rice and wheat fermented with Ganoderma sessile and Pleurotus ostreatus. Solid-state fermentation significantly improved the antioxidant power of the substrates which seemed to be highly correlated with the increase of the phenolic compounds. This increase peaked in the second to third week and decreased after this point. Triterpene content also increased, especially in substrates fermented with G. sessile. Substrates fermented with G. sessile showed higher values than those fermented with P. ostreatus in all compounds, which could be a result of a higher growth rate. Fermented wheat showed higher values than fermented rice in all measured compounds except reducing sugars which can be related to a slower progress in the fermentation due to the more complex structure of the wheat grain. Our results reinforce the importance of substrate and strain selection for product modulation to meet the industry's growing needs.


Assuntos
Antioxidantes , Grão Comestível , Fermentação , Ganoderma , Valor Nutritivo , Oryza , Pleurotus , Triticum , Pleurotus/metabolismo , Pleurotus/crescimento & desenvolvimento , Pleurotus/química , Antioxidantes/metabolismo , Antioxidantes/análise , Ganoderma/metabolismo , Ganoderma/química , Ganoderma/crescimento & desenvolvimento , Oryza/química , Oryza/metabolismo , Grão Comestível/química , Grão Comestível/metabolismo , Triticum/química , Triticum/metabolismo , Polifenóis/metabolismo , Polifenóis/análise , Polifenóis/química , Triterpenos/metabolismo
3.
Folia Microbiol (Praha) ; 69(5): 953-973, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38976188

RESUMO

Ganoderma sp., the fungal agent causing basal stem rot (BSR), poses a severe threat to global oil palm production. Alarming increases in BSR occurrences within oil palm growing zones are attributed to varying effectiveness in its current management strategies. Asymptomatic progression of the disease and the continuous monoculture of oil palm pose challenges for prompt and effective management. Therefore, the development of precise, early, and timely detection techniques is crucial for successful BSR management. Conventional methods such as visual assessments, culture-based assays, and biochemical and physiological approaches prove time-consuming and lack specificity. Serological-based diagnostic methods, unsuitable for fungal diagnostics due to low sensitivity, assay affinity, cross-contamination which further underscores the need for improved techniques. Molecular PCR-based assays, utilizing universal, genus-specific, and species-specific primers, along with functional primers, can overcome the limitations of conventional and serological methods in fungal diagnostics. Recent advancements, including real-time PCR, biosensors, and isothermal amplification methods, facilitate accurate, specific, and sensitive Ganoderma detection. Comparative whole genomic analysis enables high-resolution discrimination of Ganoderma at the strain level. Additionally, omics tools such as transcriptomics, proteomics, and metabolomics can identify potential biomarkers for early detection of Ganoderma infection. Innovative on-field diagnostic techniques, including remote methods like volatile organic compounds profiling, tomography, hyperspectral and multispectral imaging, terrestrial laser scanning, and Red-Green-Blue cameras, contribute to a comprehensive diagnostic approach. Ultimately, the development of point-of-care, early, and cost-effective diagnostic techniques accessible to farmers is vital for the timely management of BSR in oil palm plantations.


Assuntos
Arecaceae , Ganoderma , Doenças das Plantas , Ganoderma/genética , Doenças das Plantas/microbiologia , Arecaceae/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , Técnicas de Diagnóstico Molecular
4.
J Ethnopharmacol ; 334: 118530, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977221

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Ganoderma leucocontextum T.H. Li, W. Q. Deng M. Wang & H.P.Hu. is a highland herbal medicine that has been shown to nourish the nervesand prolong life. Nevertheless, there is no evidence to indicate that Ganoderma leucocontextum triterpenoids (GLTs) reduce the damage triggered by Alzheimer's disease (AD). AIM OF THE STUDY: The aim of this investigation was to ascertain the protective effects of GLTs on AD mice models and cells, as well as to look into potential pathways. MATERIALS AND METHODS: In this study, the phytochemical characterization of GLTs was performed by High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). The AD mouse model was induced by injecting intraperitoneally with D-galactose (120 mg/kg) and administering orally with aluminum chloride (20 mg/kg) daily for 28 days. After that, donepezil (5 mg/kg) and GLTs (0.4, 0.8, and 1.6 g/kg) were administered orally for 35 days. During the treatment period, aluminum chloride (20 mg/kg) and D-galactose (120 mg/kg) were continuously administered. And the behavior of the animals and the molecular changes of the hippocampus were determined after the whole experimental procedure. Furthermore, BV-2 cells were employed to validate GLTs' anti-neuroinflammatory properties. RESULTS: The total triterpenoids content was 443.12 ± 0.21 g/kg and was inferred to contain 19 classes of substances such as organic acids, amino acids, vitamins, flavonoids, and other chemicals in GLTs. Treatment of D-galactose/aluminum chloride-induced mouse with GLTs can ameliorate AD symptoms, counteract cognitive decline, improve Aß1-42 deposition, reduce the expression level of pro-apoptotic proteins, and attenuate the activation of hippocampal microglia and astrocytes. GLTs significantly increased the expression of antioxidant enzymes and significantly reduced the expression of inflammatory factors. GLTs inhibits nuclear factor kappa B (NF-κB) nuclear translocation and preserves myd88/traf6-mediated mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, GLTs (2 and 5 mg/mL) inhibited the generation of nitric oxide and protected lipopolysaccharide (1 mg/L)-induced neuroinflammation in BV-2 cells. CONCLUSIONS: Taken together, Ganoderma leucocontextum triterpenoids can improve cognitive functions, including learning and memory, by reducing neuroinflammation and oxidative stress, preventing apoptosis, and controlling amyloid genesis.


Assuntos
Cloreto de Alumínio , Doença de Alzheimer , Encéfalo , Galactose , Ganoderma , Triterpenos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Ganoderma/química , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Camundongos , Cloreto de Alumínio/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular
7.
Phytochemistry ; 224: 114168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823569

RESUMO

Three previously undescribed highly modified lanostane triterpenoids, ganopyrone A, ganocolossusin I, and ganodermalactone Y, were isolated from the artificially cultivated fruiting bodies of the basidiomycete Ganoderma colossus TBRC-BCC 17711. Ganopyrone A possesses an unprecedented polycyclic carbon skeleton with an α-pyrone ring and C-18/C-23 bond. It showed antimalarial activity against Plasmodium falciparum K1 (multidrug-resistant strain) with an IC50 value of 7.8 µM (positive control: dihydroartemisinin, IC50 1.4 nM), while its cytotoxicity (Vero cells) was much weaker (IC50 103 µM).


Assuntos
Antimaláricos , Carpóforos , Ganoderma , Plasmodium falciparum , Triterpenos , Ganoderma/química , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Carpóforos/química , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação , Animais , Estrutura Molecular , Células Vero , Chlorocebus aethiops , Lanosterol/análogos & derivados , Lanosterol/farmacologia , Lanosterol/química , Lanosterol/isolamento & purificação , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
8.
Int J Med Mushrooms ; 26(7): 13-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884263

RESUMO

As a commonly used Chinese herbal medicine, Ganoderma applanatum (Pers.) Pat., also known as flat-ling Ganoderma (Chinese name bianlingzhi), old mother fungus (laomujun), and old ox liver (laoniugan), has high medicinal value. It is used as an anti-cancer drug in China and Japan. Besides, it can treat rheumatic tuberculosis and has the effect of relieving pain, clearing away heat, eliminating accumulation, stopping bleeding and eliminating phlegm. The purpose of this review is to analyze the research progress systematically and comprehensively in mycology, mycochemistry and pharmacological activities of G. applanatum, and discuss the prospect of prospective research and implementation of this medicinal material. A comprehensive literature search was performed on G. applanatum using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier. Collected data from different sources was comprehensively summarized for mycology, mycochemistry and pharmacology of G. applanatum. A total of 324 compounds were recorded, the main components of which were triterpenoids, meroterpenoids, steroids, and polysaccharides. G. applanatum and its active ingredients have a variety of pharmacological effects, including anti-tumor, liver protection, hypoglycemic, anti-fat, anti-oxidation, antibacterial and other activities. Although G. applanatum is widely used in traditional medicine and has diverse chemical constituents, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity.


Assuntos
Ganoderma , Ganoderma/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química
9.
J Am Chem Soc ; 146(25): 17446-17455, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861463

RESUMO

Polysaccharides from a medicinal fungus Ganoderma sinense represent important and adjunctive therapeutic agents for treating various diseases, including leucopenia and hematopoietic injury. However, the synthetic accessibility to long, branched, and complicated carbohydrates chains from Ganoderma sinense polysaccharides remains a challenging task in chemical synthesis. Here, we report the modular chemical synthesis of nona-decasaccharide motif from Ganoderma sinense polysaccharide GSPB70-S with diverse biological activities for the first time through one-pot stereoselective glycosylation strategy on the basis of glycosyl ortho-(1-phenyvinyl)benzoates, which not only sped up carbohydrates synthesis but also reduced chemical waste and avoided aglycones transfer issues inherent to one-pot glycosylation on the basis of thioglycosides. The synthetic route also highlights the following key steps: (1) preactivation-based one-pot glycosylation for highly stereoselective constructions of several 1,2-cis-glycosidic linkages, including three α-d-GlcN-(1 → 4) linkages and one α-d-Gal-(1 → 4) bond via the reagent N-methyl-N-phenylformamide modulation; (2) orthogonal one-pot assembly of 1,2-trans-glycosidic linkages in various linear and branched glycans fragments by strategic combinations of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl ortho-(1-phenyvinyl)benzoates; and (3) the final [1 × 4 + 15] Yu glycosylation for efficient assembly of nona-decasaccharide target. Additionally, shorter sequences of 4-mer, 5-mer, and 6-mer are also prepared for structure-activity relationship biological studies. The present work shows that this one-pot stereoselective glycosylation strategy can offer a reliable and effective means to streamline chemical synthesis of long, branched, and complex carbohydrates with many 1,2-cis-glycosidic bonds.


Assuntos
Ganoderma , Glicosilação , Ganoderma/química , Estereoisomerismo , Oligossacarídeos/química , Oligossacarídeos/síntese química , Polissacarídeos/química , Polissacarídeos/síntese química
10.
Pak J Biol Sci ; 27(5): 256-267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38840466

RESUMO

<b>Background and Objective:</b> The prioritisation of oil palm studies involves the exploration of novel bacterial isolates as possible agents for suppressing <i>Ganoderma boninense</i>. The objective of this study was to evaluate and characterise the potential of rhizospheric bacteria, obtained from the rhizosphere of oil palm plants, in terms of their ability to demonstrate anti-<i>Ganoderma </i>activity. <b>Materials and Methods:</b> The study began by employing a dual culture technique to select hostile bacteria. Qualitative detection was performed to assess the antifungal activity, as well as the synthesis of chitinase and glucanase, from certain isolates. The candidate strains were molecularly identified using 16S-rRNA ribosomal primers, specifically the 27F and 1492R primers. <b>Results:</b> The findings of the study indicated that the governmental plantation exhibited the highest ratio between diazotroph and indigenous bacterial populations in comparison to the other sites. Out of a pool of ninety bacterial isolates, a subset of twenty-one isolates demonstrated the ability to impede the development of <i>G. boninense</i>, as determined using a dual culture experiment. Twenty-one bacterial strains were found to exhibit antifungal activity. Nine possible bacteria were found based on the sequence analysis. These bacteria include <i>Burkholderia territorii</i> (RK2, RP2, RP3, RP5), <i>Burkholderia stagnalis</i> (RK3), <i>Burkholderia cenocepacia</i> (RP1), <i>Serratia marcescens</i> (RP13) and <i>Rhizobium multihospitium</i> (RU4). <b>Conclusion:</b> The findings of the study revealed that a significant proportion of the bacterial population exhibited the ability to perform nitrogen fixation, indole-3-acetic acid (IAA) production and phosphate solubilization. However, it is worth noting that <i>Rhizobium multihospitium</i> RU4 did not demonstrate the capacity for phosphate solubilization, while <i>B. territory</i> RK2 did not exhibit IAA production.


Assuntos
Ganoderma , Rizosfera , Ganoderma/metabolismo , Ganoderma/crescimento & desenvolvimento , Agentes de Controle Biológico , Bioprospecção/métodos , Microbiologia do Solo , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/genética , Bactérias/isolamento & purificação , Arecaceae/microbiologia , Desenvolvimento Vegetal , Óleo de Palmeira/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia
11.
Plant Dis ; 108(7): 1982-1986, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937876

RESUMO

Ganoderma boninense is a basidiomycete pathogen of African oil palm (Elaeis guineensis) and the causal agent of basal stem rot (BSR) disease, which is the most destructive fungal disease of oil palm in Southeast Asia. The disease is fatal for infected palms and can result in 50 to 80% losses in oil yields because of a reduction in productive life span and a yield decline of infected oil palms. In this study, G. boninense isolates collected from different locations and planting blocks with different palm ages were molecularly characterized using microsatellite genotyping. Results showed high pathogen genetic diversity (He = 0.67 to 0.74) among planting blocks and between oil palm estates. Two nearby planting blocks with similar planting ages (i.e., 1999 and 2001) had a similar percentage of BSR incidence (>20%) but showed distinct Ganoderma genetic structure as detected using STRUCTURE. Similar results were obtained from another trial site where planting blocks differing in planting age but located only less than 1 km apart showed a diverse genetic background. The pathogen genetic admixture of the oldest planting (>30% BSR incidence) differed significantly from the younger planting (1.8 to 2.8% BSR incidence, breeding trial block), suggesting that the host-pathogen genotype interaction may impact the Ganoderma genetic variation over time. The genetic structure of G. boninense, as revealed in this study, implies positive selection resulting from the pathogen genetic variation, host-pathogen interaction, and possible introductions of novel genetic variants (through spores) from adjacent plantings. These findings offer new insights into the genetic changes of G. boninense over time. The information is essential to design disease management strategies and breeding for BSR resistance in oil palm.


Assuntos
Arecaceae , Ganoderma , Variação Genética , Doenças das Plantas , Ganoderma/genética , Arecaceae/microbiologia , Doenças das Plantas/microbiologia , Malásia , Repetições de Microssatélites/genética , Genótipo
12.
Sci Rep ; 14(1): 11536, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773201

RESUMO

Advances in modern medicine have extended human life expectancy, leading to a world with a gradually aging society. Aging refers to a natural decline in the physiological functions of a species over time, such as reduced pain sensitivity and reaction speed. Healthy-level physiological pain serves as a warning signal to the body, helping to avoid noxious stimuli. Physiological pain sensitivity gradually decreases in the elderly, increasing the risk of injury. Therefore, geriatric health care receives growing attention, potentially improving the health status and life quality of the elderly, further reducing medical burden. Health food is a geriatric healthcare choice for the elderly with Ganoderma tsuage (GT), a Reishi type, as the main product in the market. GT contains polysaccharides, triterpenoids, adenosine, immunoregulatory proteins, and other components, including anticancer, blood sugar regulating, antioxidation, antibacterial, antivirus, and liver and stomach damage protective agents. However, its pain perception-related effects remain elusive. This study thus aimed at addressing whether GT could prevent pain sensitivity reduction in the elderly. We used a galactose-induced animal model for aging to evaluate whether GT could maintain pain sensitivity in aging mice undergoing formalin pain test, hot water test, and tail flexes. Our results demonstrated that GT significantly improved the sensitivity and reaction speed to pain in the hot water, hot plate, and formalin tests compared with the control. Therefore, our animal study positions GT as a promising compound for pain sensitivity maintenance during aging.


Assuntos
Envelhecimento , Animais , Camundongos , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Masculino , Limiar da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Ganoderma/química , Modelos Animais de Doenças , Medição da Dor
13.
Sci Rep ; 14(1): 10520, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714765

RESUMO

The hemibiotrophic Basidiomycete pathogen Ganoderma boninense (Gb) is the dominant causal agent of oil palm basal stem rot disease. Here, we report a complete chromosomal genome map of Gb using a combination of short-read Illumina and long-read Pacific Biosciences (PacBio) sequencing platforms combined with chromatin conformation capture data from the Chicago and Hi-C platforms. The genome was 55.87 Mb in length and assembled to a high contiguity (N50: 304.34 kb) of 12 chromosomes built from 112 scaffolds, with a total of only 4.34 Mb (~ 7.77%) remaining unplaced. The final assemblies were evaluated for completeness of the genome by using Benchmarking Universal Single Copy Orthologs (BUSCO) v4.1.4, and based on 4464 total BUSCO polyporales group searches, the assemblies yielded 4264 (95.52%) of the conserved orthologs as complete and only a few fragmented BUSCO of 42 (0.94%) as well as a missing BUSCO of 158 (3.53%). Genome annotation predicted a total of 21,074 coding genes, with a GC content ratio of 59.2%. The genome features were analyzed with different databases, which revealed 2471 Gene Ontology/GO (11.72%), 5418 KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthologous/KO (25.71%), 13,913 Cluster of Orthologous Groups of proteins/COG (66.02%), 60 ABC transporter (0.28%), 1049 Carbohydrate-Active Enzymes/CAZy (4.98%), 4005 pathogen-host interactions/PHI (19%), and 515 fungal transcription factor/FTFD (2.44%) genes. The results obtained in this study provide deep insight for further studies in the future.


Assuntos
Arecaceae , Ganoderma , Genoma Fúngico , Doenças das Plantas , Sequenciamento Completo do Genoma , Ganoderma/genética , Sequenciamento Completo do Genoma/métodos , Doenças das Plantas/microbiologia , Arecaceae/microbiologia , Arecaceae/genética , Anotação de Sequência Molecular
14.
Int J Biol Macromol ; 269(Pt 1): 131903, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688342

RESUMO

Ganoderma sinense, known as Lingzhi in China, is a medicinal fungus with anti-tumor properties. Herein, crude polysaccharides (GSB) extracted from G. sinense fruiting bodies were used to selectively inhibit triple-negative breast cancer (TNBC) cells. GSBP-2 was purified from GSB, with a molecular weight of 11.5 kDa and a composition of α-l-Fucp-(1→, ß-d-Glcp-(1→, ß-d-GlcpA-(1→, →3)-ß-d-Glcp-(1→, →3)-ß-d-GlcpA-(1→, →4)-α-d-Galp-(1→,→6)-ß-d-Manp-(1→, and →3,6)-ß-d-Glcp-(1→ at a ratio of 1.0:6.3:1.7:5.5:1.5:4.3:8.0:7.9. The anti-MDA-MB-231 cell activity of GSBP-2 was determined by methyl thiazolyl tetrazolium, colony formation, scratch wound healing, and transwell migration assays. The results showed that GSBP-2 could selectively inhibit the proliferation, migration, and invasion of MDA-MB-231 cells through the regulation of genes targeting epithelial-mesenchymal transition (i.e., Snail1, ZEB1, VIM, CDH1, CDH2, and MMP9) in the MDA-MB-231 cells. Furthermore, Western blotting results indicated that GSBP-2 could restrict epithelial-mesenchymal transition by increasing E-cadherin and decreasing N-cadherin expression through the PI3K/Akt pathway. GSBP-2 also suppressed the angiogenesis of human umbilical vein endothelial cells. In conclusion, GSBP-2 could inhibit the proliferation, migration, and invasion of MDA-MB-231 cells and showed significant anti-angiogenic ability. These findings indicate that GSBP-2 is a promising therapeutic adjuvant for TNBC.


Assuntos
Movimento Celular , Ganoderma , Neoplasias de Mama Triplo Negativas , Humanos , Ganoderma/química , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Invasividade Neoplásica , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos
15.
BMC Complement Med Ther ; 24(1): 158, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610025

RESUMO

BACKGROUND: A triplet chemotherapy regimen of docetaxel, cisplatin, and 5-fluorouracil (TPF) is used to treat head and neck squamous cell carcinoma; however, it is toxic to bone marrow mesenchymal stem cells (BMSCs). We previously demonstrated that Ganoderma spore lipid (GSL) protect BMSCs against cyclophosphamide toxicity. In this study, we investigated the protective effects of GSL against TPF-induced BMSCs and hematopoietic damage. METHODS: BMSCs and C57BL/6 mice were divided into control, TPF, co-treatment (simultaneously treated with GSL and TPF for 2 days), and pre-treatment (treated with GSL for 7 days before 2 days of TPF treatment) groups. In vitro, morphology, phenotype, proliferation, senescence, apoptosis, reactive oxygen species (ROS), and differentiation of BMSCs were evaluated. In vivo, peripheral platelets (PLTs) and white blood cells (WBCs) from mouse venous blood were quantified. Bone marrow cells were isolated for hematopoietic colony-forming examination. RESULTS: In vitro, GSL significantly alleviated TPF-induced damage to BMSCs compared with the TPF group, recovering their morphology, phenotype, proliferation, and differentiation capacity (p < 0.05). Annexin V/PI and senescence-associated ß-galactosidase staining showed that GSL inhibited apoptosis and delayed senescence in TPF-treated BMSCs (p < 0.05). GSL downregulated the expression of caspase-3 and reduced ROS formation (p < 0.05). In vivo, GSL restored the number of peripheral PLTs and WBCs and protected the colony-forming capacity of bone marrow cells (p < 0.05). CONCLUSIONS: GSL efficiently protected BMSCs from damage caused by TPF and recovered hematopoiesis.


Assuntos
Antineoplásicos , Ganoderma , Células-Tronco Mesenquimais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Docetaxel , Cisplatino , Espécies Reativas de Oxigênio , Esporos Fúngicos , Hematopoese , Fluoruracila , Lipídeos
16.
J Asian Nat Prod Res ; 26(8): 1001-1008, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38607260

RESUMO

Phytochemical investigation on the fruiting bodies of the medicinal fungus Ganoderma lingzhi led to the isolation of a new norsteroid, namely ganonorsterone A (1), together with one known steroid, cyathisterol (2). The structure and absolute configuration of compound 1 were assigned by extensive analysis of MS, NMR data, and quantum-chemical calculations including electronic circular dichroism (ECD) and calculated 13C NMR-DP4+ analysis. Bioassay results showed that compound 1 displayed moderate inhibition on NO production in RAW 264.7 macrophages.


Assuntos
Ganoderma , Óxido Nítrico , Ganoderma/química , Camundongos , Células RAW 264.7 , Animais , Estrutura Molecular , Óxido Nítrico/biossíntese , Óxido Nítrico/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Carpóforos/química
17.
Plant Foods Hum Nutr ; 79(2): 308-315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639852

RESUMO

In food industry, the characteristics of food substrate could be improved through its bidirectional solid-state fermentation (BSF) by fungi, because the functional components were produced during BSF. Six edible fungi were selected for BSF to study their effects on highland barley properties, such as functional components, antioxidant activity, and texture characteristics. After BSF, the triterpenes content in Ganoderma lucidum and Ganoderma leucocontextum samples increased by 76.57 and 205.98%, respectively, and the flavonoids content increased by 62.40% (Phellinus igniarius). Protein content in all tests increased significantly, with a maximal increase of 406.11% (P. igniarius). Proportion of indispensable amino acids increased significantly, with the maximum increase of 28.22%. Lysine content increased largest by 437.34% to 3.310 mg/g (Flammulina velutipes). For antioxidant activity, ABTS radical scavenging activity showed the maximal improvement, with an increase of 1268.95%. Low-field NMR results indicated a changed water status of highland barley after fermentation, which could result in changes in texture characteristics of highland barley. Texture analysis showed that the hardness and chewiness of the fermented product decreased markedly especially in Ganoderma lucidum sample with a decrease of 77.96% and 58.60%, respectively. The decrease indicated a significant improvement in the taste of highland barley. The results showed that BSF is an effective technology to increase the quality of highland barley and provide a new direction for the production of functional foods.


Assuntos
Antioxidantes , Fermentação , Ganoderma , Hordeum , Hordeum/química , Antioxidantes/análise , Antioxidantes/metabolismo , Ganoderma/química , Ganoderma/metabolismo , Flavonoides/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Flammulina/química , Flammulina/metabolismo , Reishi/metabolismo , Reishi/química , Manipulação de Alimentos/métodos
18.
Int J Med Mushrooms ; 26(4): 9-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523446

RESUMO

To assess the strain resources and address production challenges in Ganoderma cultivation. 150 Ganoderma strains were collected from 13 provinces in China. A comparative analysis of agronomic traits and effective components was conducted. Among the 150 strains, key agronomic traits measured were: average stipe diameter (15.92 mm), average stipe length (37.46 mm), average cap horizontal diameter (94.97 mm), average cap vertical diameter (64.21 mm), average cap thickness (15.22 mm), and average fruiting body weight (14.30 g). Based on these agronomic traits, four promising strains, namely, L08, L12, Z21, and Z39, were recommended for further cultivation and breeding. The average crude polysaccharide content ranged from 0.048% to 0.977%, and triterpenoids ranged from 0.804% to 2.010%. In addition, 73 triterpenoid compounds were identified, constituting 47.1% of the total compounds. Using a distance discrimination method, the types, and relative contents of triterpenoid compounds in 150 Ganoderma strains were classified, achieving 98% accuracy in G. lingzhi identification. The 16 triterpenoid components used for G. lingzhi identification included oleanolic acid, ursolic acid, 3ß-acetoxyergosta-7,22-dien-5α-ol, ganoderic acid DM, ganoderiol B, ganorderol A, ganoderic acid GS-1, tsugaric acid A, ganoderic acid GS-2, ganoderenic acid D, ganoderic acid Mf, ganoderic acid A, ganoderic acid K, ganoderic acid V, ganoderic acid G, and leucocontextin J. This study provides valuable insights for exploring and utilizing Ganoderma resources and for the development of new varieties.


Assuntos
Agaricales , Agaricus , Antineoplásicos , Ganoderma , Reishi , Triterpenos , Triterpenos/análise , China
19.
J Sci Food Agric ; 104(11): 6706-6713, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38551381

RESUMO

BACKGROUND: Foods contain lipids that are easily susceptible to oxidation, which can modify their sensory properties. Although these compounds provide characteristic flavours and odours, there are also unwanted compounds, such as volatile secondary oxidation products, representing a recurring problem for both the industry and consumers. Synthetic antioxidants are often employed to prevent this but their chronic consumption can be detrimental to human health. The present study evaluates the antioxidant potential of ethanolic extracts from Ganoderma resinaceum and Phlebopus bruchii using an accelerated oxidation test. RESULTS: The composition profile of the extracts was investigated, identifying the presence of tryptophan, quinic acid, caffeic acid and 3,4-dihydroxyphenylglycol-phenolic acid. The antioxidant capacity of the extracts was compared with that of butylated hydroxytoluene (BHT) in sunflower oil that was oven-heated at 60 °C. Chemical (peroxide value, p-anisidine value and conjugated dienes) and volatile (2-octenal, 2-heptenal and 2,4-decadienal) indicators were measured over 28 days. The peroxide value decreased for both extracts at a similar level to that of BHT 0.02% w/w, and conjugate dienes decreased in the presence of G. resinaceum 0.1% w/w. Meanwhile, p-anisidine exhibited a slightly greater decrease for P. bruchii 0.1% w/w than for BHT. The sample with 0.1% w/w of extracts showed a reduction in volatile secondary oxidation compounds, indicating significant antioxidant activity. CONCLUSION: Based on these results, both extracts could be proposed as potential antioxidants in foods with a high lipid content. © 2024 Society of Chemical Industry.


Assuntos
Antioxidantes , Ganoderma , Oxirredução , Antioxidantes/química , Ganoderma/química , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/química
20.
Sci Rep ; 14(1): 5330, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438519

RESUMO

This study compared the pathogenicity of monokaryotic (monokaryon) and dikaryotic (dikaryon) mycelia of the oil palm pathogen Ganoderma boninense via metabolomics approach. Ethyl acetate crude extracts of monokaryon and dikaryon were analysed by liquid chromatography quadrupole/time-of-flight-mass spectrometry (LC-Q/TOF-MS) coupled with multivariate data analysis using MetaboAnalyst. The mummichog algorithm was also used to identify the functional activities of monokaryon and dikaryon without a priori identification of all their secondary metabolites. Results revealed that monokaryon produced lesser fungal metabolites than dikaryon, suggesting that monokaryon had a lower possibility of inducing plant infection. These findings were further supported by the identified functional activities. Monokaryon exhibits tyrosine, phenylalanine, and tryptophan metabolism, which are important for fungal growth and development and to produce toxin precursors. In contrast, dikaryon exhibits the metabolism of cysteine and methionine, arginine and proline, and phenylalanine, which are important for fungal growth, development, virulence, and pathogenicity. As such, monokaryon is rendered non-pathogenic as it produces growth metabolites and toxin precursors, whereas dikaryon is pathogenic as it produces metabolites that are involved in fungal growth and pathogenicity. The LC-MS-based metabolomics approach contributes significantly to our understanding of the pathogenesis of Ganoderma boninense, which is essential for disease management in oil palm plantations.


Assuntos
Ganoderma , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Virulência , Cromatografia Líquida , Fenilalanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA