Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108372

RESUMO

The Unfolded protein response (UPR), triggered by stress in the endoplasmic reticulum (ER), is a key driver of neurodegenerative diseases. GM2 gangliosidosis, which includes Tay-Sachs and Sandhoff disease, is caused by an accumulation of GM2, mainly in the brain, that leads to progressive neurodegeneration. Previously, we demonstrated in a cellular model of GM2 gangliosidosis that PERK, a UPR sensor, contributes to neuronal death. There is currently no approved treatment for these disorders. Chemical chaperones, such as ursodeoxycholic acid (UDCA), have been found to alleviate ER stress in cell and animal models. UDCA's ability to move across the blood-brain barrier makes it interesting as a therapeutic tool. Here, we found that UDCA significantly diminished the neurite atrophy induced by GM2 accumulation in primary neuron cultures. It also decreased the up-regulation of pro-apoptotic CHOP, a downstream PERK-signaling component. To explore its potential mechanisms of action, in vitro kinase assays and crosslinking experiments were performed with different variants of recombinant protein PERK, either in solution or in reconstituted liposomes. The results suggest a direct interaction between UDCA and the cytosolic domain of PERK, which promotes kinase phosphorylation and dimerization.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Animais , Atrofia , Gangliosidoses GM2/metabolismo , Neuritos/metabolismo , Doença de Sandhoff/terapia , Ácido Ursodesoxicólico/farmacologia , eIF-2 Quinase/metabolismo
2.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142595

RESUMO

The gangliosidoses GM2 are a group of pathologies mainly affecting the central nervous system due to the impaired GM2 ganglioside degradation inside the lysosome. Under physiological conditions, GM2 ganglioside is catabolized by the ß-hexosaminidase A in a GM2 activator protein-dependent mechanism. In contrast, uncharged substrates such as globosides and some glycosaminoglycans can be hydrolyzed by the ß-hexosaminidase B. Monogenic mutations on HEXA, HEXB, or GM2A genes arise in the Tay-Sachs (TSD), Sandhoff (SD), and AB variant diseases, respectively. In this work, we validated a CRISPR/Cas9-based gene editing strategy that relies on a Cas9 nickase (nCas9) as a potential approach for treating GM2 gangliosidoses using in vitro models for TSD and SD. The nCas9 contains a mutation in the catalytic RuvC domain but maintains the active HNH domain, which reduces potential off-target effects. Liposomes (LPs)- and novel magnetoliposomes (MLPs)-based vectors were used to deliver the CRISPR/nCas9 system. When LPs were used as a vector, positive outcomes were observed for the ß-hexosaminidase activity, glycosaminoglycans levels, lysosome mass, and oxidative stress. In the case of MLPs, a high cytocompatibility and transfection ratio was observed, with a slight increase in the ß-hexosaminidase activity and significant oxidative stress recovery in both TSD and SD cells. These results show the remarkable potential of CRISPR/nCas9 as a new alternative for treating GM2 gangliosidoses, as well as the superior performance of non-viral vectors in enhancing the potency of this therapeutic approach.


Assuntos
Gangliosidoses GM2 , Doença de Tay-Sachs , Desoxirribonuclease I/metabolismo , Fibroblastos/metabolismo , Proteína Ativadora de G(M2) , Gangliosídeo G(M2)/genética , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/terapia , Edição de Genes , Globosídeos/metabolismo , Glicosaminoglicanos/metabolismo , Hexosaminidase A/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Lipossomos/metabolismo , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/metabolismo , Doença de Tay-Sachs/terapia , beta-N-Acetil-Hexosaminidases/metabolismo
3.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867370

RESUMO

GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the ß-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay-Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. The blood-brain barrier represents a challenge for the development of therapeutic agents for these disorders. In this sense, alternative routes of administration (e.g., intrathecal or intracerebroventricular) have been evaluated, as well as the design of fusion peptides that allow the protein transport from the brain capillaries to the central nervous system. In this review, we outline the current knowledge about clinical and physiopathological findings of GM2 gangliosidoses, as well as the ongoing proposals to overcome some limitations of the traditional alternatives by using novel strategies such as molecular Trojan horses or advanced tools of genome editing.


Assuntos
Proteína Ativadora de G(M2)/genética , Gangliosidoses GM2/patologia , beta-N-Acetil-Hexosaminidases/genética , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Barreira Hematoencefálica , Ensaios Clínicos como Assunto , Dieta Cetogênica , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/terapia , Terapia Genética , Humanos , Mutação , Pirimetamina/uso terapêutico , Transplante de Células-Tronco
4.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 225-239, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389374

RESUMO

GM2-gangliosidosis, a subgroup of lysosomal storage disorders, is caused by deficiency of hexosaminidase activity, and comprises the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents normal metabolization of ganglioside GM2, usually resulting in progressive neurodegenerative disease. The molecular mechanisms whereby GM2 accumulation in neurons triggers neurodegeneration remain unclear. In vitro experiments, using microsomes from Sandhoff mouse model brain, showed that increase of GM2 content negatively modulates sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (Pelled et al., 2003). Furthermore, Ca2+ depletion in endoplasmic reticulum (ER) triggers Unfolded Protein Response (UPR), which tends to restore homeostasis in the ER; however, if cellular damage persists, an apoptotic response is initiated. We found that ER GM2 accumulation in cultured neurons induces luminal Ca2+ depletion, which in turn activates PERK (protein kinase RNA [PKR]-like ER kinase), one of three UPR sensors. PERK signaling displayed biphasic activation; i.e., early upregulation of cytoprotective calcineurin (CN) and, under prolonged ER stress, enhanced expression of pro-apoptotic transcription factor C/EBP homologous protein (CHOP). Moreover, GM2 accumulation in neuronal cells induced neurite atrophy and apoptosis. Both processes were effectively modulated by treatment with the selective PERK inhibitor GSK2606414, by CN knockdown, and by CHOP knockdown. Overall, our findings demonstrate the essential role of PERK signaling pathway contributing to neurodegeneration in a model of GM2-gangliosidosis.


Assuntos
Gangliosidoses GM2/metabolismo , Neuritos/fisiologia , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Atrofia/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Gangliosídeo G(M2)/metabolismo , Gangliosídeo G(M2)/fisiologia , Gangliosidoses GM2/genética , Indóis/farmacologia , Camundongos , Neuritos/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Transdução de Sinais/genética , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA