Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 304: 110808, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568304

RESUMO

Iron (Fe) is an essential micronutrient for plants and is present abundantly in the Earth's crust. However, Fe bioavailability in alkaline soils is low due to the decreased solubility of the ferric ions. Previously, we have demonstrated the relationship between the PAP/SAL1 retrograde signaling pathway, the activity of Strategy I Fe uptake genes (FIT, FRO2, IRT1), and ethylene signaling. In this work, we have characterized mutant lines that are deficient in this retrograde signaling pathway and their ability to grow in alkaline soils. This adverse growth condition caused less impact on mutant plants, which showed less reduced rosette area, and higher carotenoid, chlorophyll and Fe content than wild-type plants. Several genes involved in the biosynthesis and excretion of secondary metabolites derived from the phenylpropanoid pathway, which improve Fe uptake, were elevated in mutant plants. Finally, we observed an increase in excreted fluorescent phenolic compounds in mutant lines compared to wild-type plants. In this way, PAP/SAL1 mutants showed alterations in the biosynthesis of metabolites that mobilize Fe, which ultimately improved these plants ability to grow in alkaline soils. Results agree with the existence of a link between the PAP/SAL1 retrograde signaling pathway and the regulation of Fe deficiency responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Deficiências de Ferro , Fosfoadenosina Fosfossulfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Arabidopsis/fisiologia , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Solo/química
2.
BMC Genomics ; 4(1): 51, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14675496

RESUMO

BACKGROUND: Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. RESULTS: Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. CONCLUSIONS: A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis.


Assuntos
Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Genoma Bacteriano , Proteínas de Membrana Transportadoras , Enxofre/metabolismo , Adenosina Fosfossulfato/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Fosfoadenosina Fosfossulfato/metabolismo , Homologia de Sequência de Aminoácidos , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo , Transportadores de Sulfato , Sulfatos/metabolismo , Sulfetos/metabolismo , Sulfitos/metabolismo
3.
J Cell Biochem ; 82(3): 501-11, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11500926

RESUMO

Zinc has been postulated as an important nutritional factor involved in growth promotion; however, the cellular mechanisms involved in the effects of zinc on linear growth remain to be elucidated. This study was conducted to evaluate the effects of zinc on the proliferation rate of epiphyseal growth plate chondrocytes and on the structural characteristics of the proteoglycans synthesized by these cells. For these purposes, hypertrophic and proliferating chondrocytes were isolated from the tibiae of 1- and 5-week-old chickens, respectively. Chondrocytes were cultured under serum-free conditions and primary cultures were used. The results showed that zinc stimulated proliferation by 40-50% above the baseline in the case of proliferating chondrocytes, but it had no effect on hypertrophic chondrocytes. Zinc had neither any effects on mean charge density of proteoglycans synthesized by hypertrophic chondrocytes nor in their hydrodynamic size. In contrast, zinc induced an increase in mean charge density and a decrease of hydrodynamic size of proteoglycans synthesized by proliferating chondrocytes. In both cell types zinc had no effect on the composition and hydrodynamic size of the glycosaminoglycan chains. The increased ability of proliferating chondrocytes cultured in the presence of zinc to synthesize 3'-phosphoadenosine 5'-phosphosulfate (PAPS) could be explained by the induction of enzymes participating in the sulfation pathway of proteoglycans. Therefore, the increase in mean charge density of proteoglycans observed in this study may be explained by an increase of the degree of sulfation of proteoglycan molecules. We speculate that the effect of zinc on linear growth may be explained at a cellular level by: a) an increase in proliferation rates of proliferating chondrocytes, and b) increased synthesis of highly charged proteoglycan molecules which decreases mineralization.


Assuntos
Condrócitos/efeitos dos fármacos , Epífises/efeitos dos fármacos , Proteoglicanas/metabolismo , Zinco/farmacologia , Animais , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Condrócitos/citologia , Condrócitos/metabolismo , Cromatografia em Gel , Cromatografia por Troca Iônica , Colágeno/metabolismo , Epífises/citologia , Epífises/metabolismo , Glicosaminoglicanos/biossíntese , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Lâmina de Crescimento/citologia , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/metabolismo , Fosfoadenosina Fosfossulfato/biossíntese , Fosfoadenosina Fosfossulfato/metabolismo , Proteoglicanas/biossíntese , Proteoglicanas/química , Sulfatos/metabolismo , Tíbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA