RESUMO
DUSP3 is a phosphatase expressed and active in several tissues that dephosphorylates tyrosine residues in many regulatory proteins of cellular activities such as proliferation, survival, and cell death. Recently, two new independent functions were assigned to this enzyme: dephosphorylation of focal adhesion kinase (FAK) and regulation of nucleotide-excision repair (NER) pathway. Genotoxic stress by UV radiation is known to affect cell morphology, adhesion, and migration for affecting, for example, the Rho GTPases that regulate actin cytoskeleton. This work investigated the intersection of DUSP3 function, XPA protein activity, and UV toxicity by examining cell migration, FAK, and SRC kinase phosphorylation status, in addition to cell morphology, in fibroblast cells proficient (MRC-5) or deficient (XPA) of the NER pathway. DUSP3 loss reduced cell migration of normal cells, which was stimulated by the genotoxic stress, effects evidenced in presence of serum mitogenic stimulus. However, NER-deficient cells migration response was the opposite since DUSP3 loss increased migration, especially after cells being exposed to UV stress. The levels of pFAK(Y397) peaked 15 min and 1 h after UV radiation in normal cells, but only slightly increased in repair-deficient cells. However, the DUSP3 knockdown strongly raised pFAK(Y397) levels in both cells, but especially in XPA cells as supported by the higher SRC activity. These effects impacted on the dynamics of actin-based structures formation, such as stress fibres, apparently dependent on DUSP3 and DNA-repair (NER) proficiency of the cells. Altogether our findings suggest this dual-phosphatase is bridging gaps between the complex regulation of cell morphology, motility, and genomic stability.
Assuntos
Movimento Celular/efeitos da radiação , Fosfatase 3 de Especificidade Dupla/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Raios Ultravioleta , Adesão Celular/efeitos da radiação , Linhagem Celular , Reparo do DNA/efeitos da radiação , Fosfatase 3 de Especificidade Dupla/antagonistas & inibidores , Fosfatase 3 de Especificidade Dupla/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Fosforilação/efeitos da radiação , Interferência de RNA , RNA Interferente Pequeno/metabolismoRESUMO
Protein tyrosine kinases (PTK), discovered in the 1970s, have been considered master regulators of biological processes with high clinical significance as targets for human diseases. Their actions are countered by protein tyrosine phosphatases (PTP), enzymes yet underrepresented as drug targets because of the high homology of their catalytic domains and high charge of their catalytic pocket. This scenario is still worse for some PTP subclasses, for example, for the atypical dual-specificity phosphatases (ADUSPs), whose biological functions are not even completely known. In this sense, the present work focuses on the dual-specificity phosphatase 3 (DUSP3), also known as VH1-related phosphatase (VHR), an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 expression and activities are suggestive of a tumor suppressor or tumor-promoting enzyme in different types of human cancers. Furthermore, DUSP3 has other biological functions involving immune response mediation, thrombosis, hemostasis, angiogenesis, and genomic stability that occur through either MAPK-dependent or MAPK-independent mechanisms. This broad spectrum of actions is likely due to the large substrate diversity and molecular mechanisms that are still under scrutiny. The growing advances in characterizing new DUSP3 substrates will allow the development of pharmacological inhibitors relevant for possible future clinical trials. This review covers all aspects of DUSP3, since its gene cloning and crystallographic structure resolution, in addition to its classical and novel substrates and the biological processes involved, followed by an update of what is currently known about the DUSP3/VHR-inhibiting compounds that might be considered potential drugs to treat human diseases.
Assuntos
Fosfatase 3 de Especificidade Dupla/genética , Fosfatase 3 de Especificidade Dupla/fisiologia , Fosfatase 3 de Especificidade Dupla/antagonistas & inibidores , Humanos , Proteínas Quinases Ativadas por Mitógeno , Neoplasias/enzimologia , Neovascularização Patológica , Fosforilação , Proteínas Tirosina Fosfatases , Proteínas Tirosina QuinasesRESUMO
BACKGROUND: Radiotherapy causes the regression of many human tumors by increasing DNA damage, and the novel molecular mechanisms underlying the genomic instability leading to cancer progression and metastasis must be elucidated. Atypical dual-specificity phosphatase 3 (DUSP3) has been shown to down-regulate mitogen-activated protein kinases (MAPKs) to control the proliferation and apoptosis of human cancer cells. We have recently identified novel molecular targets of DUSP3 that function in DNA damage response and repair; however, whether DUSP3 affects these processes remains unknown. METHODS: Tumor cell lines in which DUSP3 activity was suppressed by pharmacological inhibitors or a targeted siRNA were exposed to gamma radiation, and proliferation, survival, DNA strand breaks and recombination repair pathways were sequentially analyzed. RESULTS: The combination of reduced DUSP3 activity and gamma irradiation resulted in decreased cellular proliferation and survival and increased cellular senescence compared with the effects of radiation exposure alone. Gamma radiation-induced DNA damage was increased by the loss of DUSP3 activity and correlated with increased levels of phospho-H2AX protein and numbers of ionizing radiation-induced γ-H2AX foci, which were reflected in diminished efficiencies of homologous recombination (HR) and non-homologous end-joining (NHEJ) repair. Similar results were obtained in ATM-deficient cells, in which reduced DUSP3 activity increased radiosensitivity, independent of increased MAPK phosphorylation. CONCLUSION: The loss of DUSP3 activity markedly increases gamma radiation-induced DNA strand breaks, suggesting a potential novel role for DUSP3 in DNA repair. GENERAL SIGNIFICANCE: The radioresistance of tumor cells is effectively reduced by a combination of approaches through the inhibition of DUSPs.