Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 10(7): e0133406, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225849

RESUMO

The present study uses stable isotopes of nitrogen and carbon (δ15Nandδ13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6-10 mm standard length) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). These regions are differentiated by their temperature regime and relative productivity, with the GOM being significantly warmer and more productive. MED BFT larvae showed the highest δ15N signatures, implying an elevated trophic position above the underlying microzooplankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM and MED which indicates early life trophodynamics differences between these spawning habitats. Significant trophic differences between the GOM and MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, which may have important implications in their growth during their early life stages.These low δ15N levels in the zooplankton from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to diatrophic inputs by cyanobacteria. Lack of enrichment for δ15N in BFT larvae compared to zooplankton implies an alternative grazing pathway from the traditional food chain of phytoplankton-zooplankton-larval fish. Results provide insight for a comparative characterization of the trophic pathways variability of the two main spawning grounds for BFT larvae.


Assuntos
Isótopos de Carbono/metabolismo , Larva/crescimento & desenvolvimento , Isótopos de Nitrogênio/metabolismo , Atum/crescimento & desenvolvimento , Animais , Fenômenos Biológicos/fisiologia , Dieta , Ecologia , Ecossistema , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Golfo do México , Larva/metabolismo , Região do Mediterrâneo , Estado Nutricional/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Temperatura , Atum/metabolismo , Zooplâncton/crescimento & desenvolvimento
2.
PLoS One ; 10(3): e0119468, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25768918

RESUMO

The effect of water temperature on biochemical composition, growth and reproduction of the ornamental shrimp, Neocaridina heteropoda heteropoda, was investigated to determine the optimum temperature for its culture. The effect of embryo incubation temperature on the subsequent performance of juveniles was also evaluated. Ovigerous females and recently hatched juveniles (JI) were maintained during egg incubation and for a 90-day period, respectively, at three temperatures (24, 28 and 32 °C). Incubation period increased with decreasing water temperature, but the number and size of JI were similar among treatments. At day 30 of the 90-day period, body weight and growth increment (GI) at 24 °C were lower than those at 28 and 32 °C. On subsequent days, GI at 24 °C exceeded that at 28 and 32 °C, leading to a similar body weight among treatments. These results suggest growth was delayed at 24 °C, but only for 30 days after hatching. The lipid concentration tended to be lowest, intermediate and highest at 28, 32 and 24 °C, respectively, possibly as a consequence of the metabolic processes involved in growth and ovarian maturation. Protein and glycogen concentrations were similar among treatments. Both the growth trajectory and biochemical composition of shrimps were affected by the temperature experienced during the 90-day growth period independently of the embryo incubation temperature. During the growth period, shrimps reached sexual maturity and mated, with the highest proportion of ovigerous females occurring at 28 °C. All the females that matured and mated at 32 °C lost their eggs, indicating a potentially stressful effect of high temperature on ovarian maturation. Based on high survival and good growth performance of shrimps at the three temperatures tested over the 90-day period it is concluded that N. heteropoda heteropoda is tolerant to a wide range of water temperatures, with 28 °C being the optimum temperature for its culture.


Assuntos
Fenômenos Biológicos/fisiologia , Decápodes/fisiologia , Reprodução/fisiologia , Animais , Peso Corporal/fisiologia , Ovos , Embrião não Mamífero/fisiologia , Feminino , Fenômenos Fisiológicos/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA