Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.431
Filtrar
1.
Food Chem ; 462: 140900, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39213973

RESUMO

Australian honey samples from four botanical genera (Lophostemon, Eucalyptus, Macadamia and Corymbia) were investigated for their phenolic content. An improved phenolic extraction and high-performance liquid chromatography-diode array detection (HPLC-DAD) analysis method allowed for the rapid and reliable identification of phenolic compounds. A concentrated liquid-liquid extraction method with an acidified aqueous solution and acetonitrile was optimised to isolate phenolic compounds from the honey matrix. The concentrated extraction method improved sensitivity and permitted the identification of phenolics present at low concentrations (LOD: 0.012-0.25 mg/kg and LOQ: 0.040-2.99 mg/kg). The optimised HPLC-DAD chromatographic conditions gave stable retention times, improved peak separation and allowed for the inexpensive detection of each of the 109 phenolic compounds at their maximum absorbance wavelength. Out of the 109 phenolic compounds included in this study, 49 were identified in the Australian honeys tested. Furthermore, 25 of the 49 compounds were determined to be markers specific to honey floral origin.


Assuntos
Eucalyptus , Mel , Fenóis , Mel/análise , Cromatografia Líquida de Alta Pressão , Fenóis/análise , Fenóis/química , Eucalyptus/química , Austrália , Flores/química
2.
Food Chem ; 462: 140949, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39213976

RESUMO

Hydrogels based on natural polymers have aroused interest from the scientific community. The aim of this investigation was to obtain natural extracts from mango peels and to evaluate their addition (1, 3, and 5%) on the rheological behavior of mango starch hydrogels. The total phenolic content, antioxidant activities, and phenolic acid profile of the natural extracts were evaluated. The viscoelastic and thixotropic behavior of hydrogels with the addition of natural extracts was evaluated. The total phenol content and antioxidant activity of the extracts increased significantly (p<0.05) with the variation of the ethanol-water ratio; the phenolic acid profile showed the contain of p-coumaric, ellagic, ferulic, chlorogenic acids, epicatechein, catechin, querecetin, and mangiferin. The viscoelastic behavior of the hydrogels showed that the storage modulus G' is larger than the loss modulus G'' indicating a viscoelastic solid behavior. The addition of extract improved the thermal stability of the hydrogels. 1% of the extracts increase viscoelastic and thixotropic properties, while concentrations of 3 to 5% decreased. The recovery percentage (%Re) decreases at concentrations from 0% to 1% of natural extracts, however, at concentrations from 3% to 5% increased.


Assuntos
Antioxidantes , Hidrogéis , Mangifera , Extratos Vegetais , Reologia , Amido , Mangifera/química , Hidrogéis/química , Extratos Vegetais/química , Amido/química , Antioxidantes/química , Viscosidade , Frutas/química , Fenóis/química
3.
Food Chem ; 462: 140806, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241684

RESUMO

Dried citrus peel (DCP), also called "Chen Pi", has edible and medicinal value. However, the specific differences among various sources remain unknown. Herein, we collected six DCP species, namely, one Citrus reticulata 'Chachi' (CZG) and five Citrus reticulata Blanco (CRB). Targeted high-performance liquid chromatography and untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry were employed to comprehensively compare the phenolic compounds and metabolites in DCP. Interestingly, 13 different phenolic compounds were noted in DCP. The total phenolic compound content in all CRB samples (58.86-127.65 mg/g) was higher than that of CZG (39.47 mg/g). Untargeted metabolomic revealed 1495 compounds, with 115 differentially expressed metabolites for CRBs and CZG, particularly flavonoids (38), terpenoids (15), and phenolic acids and derivatives (9). Lastly, antioxidant assays revealed that all CRB samples exhibited higher antioxidant activities compared with CZG. Therefore, our study results provide a theoretical basis for the high-value utilization of citrus peels and their metabolites.


Assuntos
Antioxidantes , Citrus , Frutas , Metabolômica , Extratos Vegetais , Espectrometria de Massas em Tandem , Citrus/química , Citrus/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão , Frutas/química , Frutas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Fenóis/metabolismo , Fenóis/química , Fenóis/análise , Flavonoides/metabolismo , Flavonoides/química , Flavonoides/análise
4.
J Environ Sci (China) ; 149: 512-523, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181663

RESUMO

Oxygen activation leading to the generation of reactive oxygen species (ROS) is essential for photocatalytic environmental remediation. The limited efficiency of O2 adsorption and reductive activation significantly limits the production of ROS when employing C3N4 for the degradation of emerging pollutants. Doping with metal single atoms may lead to unsatisfactory efficiency, due to the recombination of photogenerated electron-hole pairs. Here, Mn and S single atoms were introduced into C3N4, resulting in the excellent photocatalytic performances. Mn/S-C3N4 achieved 100% removal of bisphenol A, with a rate constant 11 times that of pristine C3N4. According to the experimental results and theoretical simulations, S-atoms restrict holes, facilitating the photo-generated carriers' separation. Single-atom Mn acts as the O2 adsorption site, enhancing the adsorption and activation of O2, resulting the generation of ROS. This study presents a novel approach for developing highly effective photocatalysts that follows a new mechanism to eliminate organic pollutants from water.


Assuntos
Oxigênio , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Oxigênio/química , Catálise , Manganês/química , Compostos Benzidrílicos/química , Nitrilas/química , Adsorção , Espécies Reativas de Oxigênio , Recuperação e Remediação Ambiental/métodos , Fenóis/química
5.
Food Chem ; 462: 140925, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39190981

RESUMO

Grape pomace (GP) and pecan shell (PS) are two by-products rich in phenolic compounds (PC), and dietary fiber (DF) that may be considered for the development of functional baked foods. In this study, four formulations with different GP:PS ratios (F1(8%:5%), F2(5%:5%), F3(5%:2%), F4(0%:5%), and control bread (CB)) were elaborated and characterized (physiochemical and phytochemical content). Also, their inner structure (SEM), changes in their FTIR functional group's vibrations, and the bioaccessibility of PC and sugars, including an in vitro glycemic index, were analyzed. Results showed that all GP:PS formulations had higher mineral, protein, DF (total, soluble, and insoluble), and PC content than CB. Additionally, PC and non-starch polysaccharides affected gluten and starch absorbance and pores distribution. In vitro digestion model showed a reduction in the glycemic index for all formulations, compared to CB. These findings highlight the possible health benefits of by-products and their interactions in baked goods.


Assuntos
Pão , Fibras na Dieta , Índice Glicêmico , Fenóis , Vitis , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Pão/análise , Vitis/química , Fenóis/química , Fenóis/metabolismo , Humanos , Digestão , Alimentos Fortificados/análise , Resíduos/análise
6.
Food Chem ; 462: 140956, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197243

RESUMO

The extraction of bioactive compounds is based on the application of various extraction techniques. Therefore, the stem and root bark of the plant species Morinda lucida L. were used in this research, while the extraction procedure was performed using three extraction techniques: HAE (homogenizer extraction), UAE (ultrasound extraction) as modern, and MAC (maceration) as conventional extraction technique. The presence of different classes of secondary metabolites was determined using the UHPLC method, while the content of total phenols and flavonoids was determined spectrophotometrically. The biological potential was investigated by in vitro antioxidant and enzyme assays. Different extraction technologies showed significant differences in only two classes of phenols, namely lignans and phenolic acids, which were significantly higher in HAE than in UAE and MAC. These findings highlight the significant effect of stem and bark extracts of M. lucida, opening the way for innovative industrial exploitation of these matrices.


Assuntos
Antioxidantes , Morinda , Fenóis , Extratos Vegetais , Morinda/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/isolamento & purificação , Casca de Planta/química , Fracionamento Químico/métodos , Caules de Planta/química , Raízes de Plantas/química
7.
J Environ Sci (China) ; 147: 74-82, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003085

RESUMO

Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.


Assuntos
Compostos Benzidrílicos , Enzimas Imobilizadas , Lacase , Fenóis , Polietilenoglicóis , Poluentes Químicos da Água , Lacase/química , Lacase/metabolismo , Fenóis/química , Poluentes Químicos da Água/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Polietilenoglicóis/química , Quitosana/química , Hidrogéis/química , Biodegradação Ambiental , Disruptores Endócrinos/química
8.
J Environ Sci (China) ; 150: 54-65, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306427

RESUMO

In this study, supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate (PMS) which successfully degrade bisphenol F (BPF). Among the supported catalysts (i.e., Pd/SiO2, Pd/CeO2, Pd/TiO2 and Pd/Al2O3), Pd/TiO2 exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content. Pd/TiO2 prepared by the deposition method leads to high Pd dispersion, which are the key factors for efficient BPF degradation. The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed. Density functional theory (DFT) calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles. The catalytic activities are strongly dependent on the structural features of the catalysts. Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.


Assuntos
Compostos Benzidrílicos , Paládio , Peróxidos , Fenóis , Paládio/química , Fenóis/química , Catálise , Compostos Benzidrílicos/química , Peróxidos/química , Modelos Químicos , Poluentes Químicos da Água/química , Adsorção
9.
Sci Rep ; 14(1): 20922, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251682

RESUMO

This study investigated the impact of two extraction methods, traditional hydrodistillation (TDH) and microwave-assisted hydrodistillation (MAH), on the essential oil yield and chemical profile of Lavandula angustifolia L., as well as the bioactive potential of the resulting wastewater. Essential oil composition was analyzed via GC-MS, revealing similar qualitative and quantitative profiles for both methods, with α-terpinolene and (-)borneol as major constituents. Wastewater analysis via LC-MS/MS and spectrophotometric assays demonstrated the presence of significant total phenolic content (3.29-1.78 mg GAE/g) and 32 individual phenolics (463.1 µg/kg for TDH; 479.33 µg/kg for MAH). These findings suggest that both essential oil and wastewater obtained by either method possess considerable bioactive potential, with the MAH method potentially offering advantages over TDH for essential oil extraction. Further exploration of wastewater applications in various industrial sectors is warranted.


Assuntos
Destilação , Cromatografia Gasosa-Espectrometria de Massas , Lavandula , Micro-Ondas , Óleos Voláteis , Óleos de Plantas , Óleos Voláteis/química , Lavandula/química , Destilação/métodos , Óleos de Plantas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Águas Residuárias/química , Fenóis/análise , Fenóis/química , Espectrometria de Massas em Tandem/métodos
10.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-39311034

RESUMO

The present study aims to investigate the differences between cork oak acorns from natural and semi-natural stands in terms of morphology, insect attack rate, and acorn chemical composition. Moreover, it examines the metabolic responses induced by insect attacks. The results show that acorns from the semi-natural stand in our study are larger than those from the natural stand. In addition, the insect attack rate was higher in the natural stand (8.25%) than in the semi-natural stand (6.25%). Furthermore, acorns in the semi-natural stand exhibit high total flavonoid content (TFC), whereas those in the natural stand are rich in total phenolic content (TPC). In terms of biochemical changes in acorns, the study revealed a remarkably significant difference in TPC, TFC, and antioxidant activity subsequent to infestation by Cydia and Curculio insects. Cydia-infested acorns from the natural stand had higher TPC levels, with a value of 93.96±0.39 mg GAE/g, showing a 17.7% increase over healthy acorns. Acorns from the semi-natural stand attacked by Curculio show the highest TFC with a value of 0.288±0.004 mg EQ/g, showing a 121.5% increase over healthy acorns. Moreover, both DPPH and FRAP methods revealed that antioxidant activity of the acorns from the semi-natural stand attacked by Curculio was more effective. This research is crucial for providing a solid foundation for the selection of highquality cork oak germplasm resources and exploring the potential valorization of insect-affected acorns in the realms of food and agriculture.


Assuntos
Antioxidantes , Flavonoides , Fenóis , Quercus , Quercus/química , Animais , Flavonoides/química , Fenóis/química , Antioxidantes/química , Insetos/química , Gorgulhos/química , Gorgulhos/fisiologia
11.
J Hazard Mater ; 479: 135751, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244983

RESUMO

Thiophenol (PhSH) is an important industrial intermediate but displays significant toxicity towards environmental and biological systems. Here, we introduce a supramolecular system based on ß-cyclodextrin (ß-CD) and boron dipyrromethene (BODIPY) as a ratiometric fluorescence probe to discriminate PhSH in environmental water samples, cells, and in vivo. In aqueous solutions, BODIPY shows extremely weak fluorescence intensity due to its aggregation into nanometer-sized clusters, which prevents its interaction with thiols. However, within a ß-CD environment, it can selectively and sensitively detect PhSH. Also, the stability of the probe was significantly improved. The mechanism studies based on stoichiometry, NMR spectroscopy, and theoretical calculation revealed distinct intermolecular interactions between ß-CD and BODIPY, including host-guest interactions and hydrogen bonds. Low limit of detection (10.7 nM) and rapid response time (5 min) have been achieved, and the practicality of the supramolecular system (BODIPY@ß-CD) has been verified by actual sample analysis. Furthermore, the first hydrogel-based sensing system for portable PhSH detection has been developed, facilitating rapid and on-site colorimetric visualization across both liquid and gas phases. Most importantly, using a low amount of the probe, early stages of low-dose exposure to PhSH can be visualized in living cells and zebrafish. Therefore, BODIPY@ß-CD is a robust new monitoring tool for the detection of PhSH in various scenarios, indicating the promising application value of the host-guest supramolecular probe in detecting highly toxic substances.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Fenóis , Compostos de Sulfidrila , Peixe-Zebra , beta-Ciclodextrinas , Compostos de Boro/química , beta-Ciclodextrinas/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/análise , Fenóis/análise , Fenóis/química , Corantes Fluorescentes/química , Animais , Humanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Limite de Detecção
12.
Chemosphere ; 364: 143227, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39218258

RESUMO

In this study, visible light-activated photocatalyst oxygen-doped C3N4@Bi12O17Cl2 (OCN@BOC) and Fe(VI) coupling system was proposed for the efficient degradation of bisphenol A (BPA). The comprehensive characterization of the OCN@BOC photocatalyst revealed its excellent photogenerated carrier separation rate in heterogeneous structures. The OCN@BOC/Fe(VI)/Vis system exhibited a remarkable BPA removal efficiency of over 84% within 5 min. Comparatively, only 37% and 59% of BPA were degraded by single OCN@BOC and Fe(VI) in 5 min, respectively. Reactive species scavenging experiments, phenyl sulfoxide transformation experiments, and electron paramagnetic resonance experiments confirmed the involvement of superoxide radicals (⋅O2-), singlet oxygen (1O2), as well as iron(V)/iron(IV) (Fe(V)/Fe(IV)) species in the degradation process of BPA. Furthermore, density functional theoretical calculations and identification of intermediates provided insights into the potential degradation mechanism of BPA during these reactions. Additionally, simulation evaluations using an ecological structure activity relationship model demonstrated that the toxicity of BPA to the ecological environment was mitigated during its degradation process. This study presented a novel strategy for removing BPA utilizing visible light photocatalysts, highlighting promising applications for practical water environment remediation with the OCN@BOC/Fe(VI)/Vis system.


Assuntos
Compostos Benzidrílicos , Luz , Oxigênio , Fenóis , Compostos Benzidrílicos/química , Fenóis/química , Oxigênio/química , Catálise , Ferro/química , Poluentes Químicos da Água/química , Fotólise , Bismuto/química
13.
Chemosphere ; 364: 143262, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39236913

RESUMO

This study explored Mason pine-derived hydrochar (MPHC) as an effective adsorbent and persulfate (PS) activator for degrading bisphenol A (BPA). Increasing MPHC dosage from 0.25 to 2.0 g L-1 raised BPA removal from 42% to 87%. Similarly, at the same MPHC dosage range and fixed PS concentration (8 mM), BPA removal by MPHC/PS increased from 66% to 91%. Additionally, at a fixed MPHC dosage (1.0 g L-1), higher PS concentrations (2-32 mM) resulted in an overall BPA removal increase from 78% to 99%. The optimal pH for BPA removal by MPHC was at pH 3, while for MPHC/PS was at pH 9. BPA degradation by MPHC was optimal at pH 3, whereas MPHC/PS was at pH 3 and pH 9. Additionally, pH 7 favored BPA adsorption for both MPHC and MPHC/PS. The study also considered the influence of coexisting anions and humic acid (HA). PO43- and NO3- influence adsorption on MPHC, but these anions' effect on MPHC/PS is limited. Furthermore, the existence of HA had minimal influence on BPA removal by MPHC/PS. The contributions of different reactive species by MPHC for BPA degradation are as follows: electron-hole (h+) 2%, singlet oxygen (1O2) 7%, superoxide radicals (O2•-) 13%, electron (e-) 2%, hydroxyl radical (•OH) 3%, whereas the remaining 48% removal was the contribution of adsorption. For MPHC/PS, adsorption accounted for 39 %, more reactive species were involved in degradation, and the donations are (h+) 3%, sulfate radicals (SO4•-) 3%, (1O2) 19%, (O2•-) 15%, (e-) 2%, and (•OH) 2%. Additionally, the performance of MPHC remains stable after three operational cycles. The preparation cost of MPHC is 3.01 € kg-1. These results highlight the potential of MPHC as an environmentally friendly material for activating PS and removing organic pollutants, suggesting its promising application in future environmental remediation efforts.


Assuntos
Compostos Benzidrílicos , Fenóis , Sulfatos , Poluentes Químicos da Água , Compostos Benzidrílicos/química , Fenóis/química , Poluentes Químicos da Água/química , Sulfatos/química , Adsorção , Concentração de Íons de Hidrogênio , Substâncias Húmicas , Recuperação e Remediação Ambiental/métodos , Purificação da Água/métodos
14.
J Agric Food Chem ; 72(38): 21208-21220, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39285773

RESUMO

Lignosulfonate (LS), kraft lignin (KL), and organosolv lignin (OL) were evaluated as potential modulating agents of the physicochemical properties of Port wine at two different concentrations for 7 and 30 days. KL and LS demonstrated the ability to remove proteins and potentiate the anthocyanin concentration. LS reduced the tannin content and the interaction of salivary acidic proline-rich proteins with wine phenolic compounds. None of the lignin promoted a perceptible color change; however, the yellowish color of KL and OL at 100 g/hL contributed to an increase in the yellow tones of wines. Lignin improved wine aroma by reducing the amount of unwanted volatiles by 30% and increasing the content of ethyl esters associated with fruity aromas by up to 60%. The results suggest that lignin, especially LS, can be employed as a modulating agent, positively impacting wine's physicochemical properties. This valorization of a byproduct opens up new opportunities for the wine industry.


Assuntos
Lignina , Odorantes , Vinho , Vinho/análise , Lignina/química , Biopolímeros/química , Odorantes/análise , Cor , Taninos/química , Vitis/química , Fenóis/química , Antocianinas/química
15.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39337480

RESUMO

Pomegranate (Punica granatum L.) peel is a potential source of bioactive phenolic compounds such as ellagic acid and α- and ß-punicalagin. This work explores the efficiency of natural deep eutectic solvents combined with ultrasound-assisted extraction (UAE) and pressurized liquid extraction (PLE) for their extraction. Five NaDESs were evaluated by employing UAE (25 °C, for 50 min) to determine their total phenolic content (Folin-Ciocalteu assay) and ellagic acid and α- and ß-punicalagin contents (high-performance liquid chromatography (HPLC-DAD)). The NaDES composed of choline chloride (ChCl) and glycerol (Gly) (1:2, molar ratio) was the most efficient in the UAE when compared with the rest of the NaDESs and water extracts. Therefore, ChCl:Gly was further evaluated using PLE at different temperatures (40, 80, 120 and 160 °C). The PLE-NaDES extract obtained at 80 °C for 20 min at 1500 psi exhibited the highest contents of ellagic acid and α- and ß-punicalagin compared to the rest of the temperatures and PLE-water extracts obtained under the same extraction conditions. Combining UAE or PLE with a NaDES emerges as a sustainable alternative for extracting ellagic acid and α- and ß-punicalagin from pomegranate peel.


Assuntos
Ácido Elágico , Fenóis , Extratos Vegetais , Punica granatum , Punica granatum/química , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/análise , Extratos Vegetais/química , Ácido Elágico/química , Ácido Elágico/isolamento & purificação , Solventes Eutéticos Profundos/química , Cromatografia Líquida de Alta Pressão/métodos , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/isolamento & purificação , Frutas/química , Solventes/química
16.
J Hazard Mater ; 479: 135619, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217935

RESUMO

Halogenated bisphenol A (BPA) derivatives are produced during disinfection treatment of drinking water or are synthesized as flame retardants (TCBPA or TBBPA). BPA is considered as an endocrine disruptor especially on human follicle-stimulating hormone receptor (FSHR). Using a global experimental approach, we assessed the effect of halogenated BPA derivatives on FSHR activity and estimated the risk of halogenated BPA derivatives to the reproductive health of exposed populations. For the first time, we show that FSHR binds halogenated BPA derivatives, at 10 nM, a concentration lower than those requires to modulate the activity of nuclear receptors and/or steroidogenesis enzymes. Indeed, bioluminescence assays show that FSHR response is lowered up to 42.36 % in the presence of BPA, up to 32.79 % by chlorinated BPA derivatives and up to 27.04 % by brominated BPA derivatives, at non-cytotoxic concentrations and without modification of basal receptor activity. Moreover, molecular docking, molecular dynamics simulations, and site-directed mutagenesis experiments demonstrate that the halogenated BPA derivatives bind the FSHR transmembrane domain reducing the signal transduction efficiency which lowers the cellular cAMP production and in fine disrupts the physiological effect of FSH. The potential reproductive health risk of exposed individuals was estimated by comparing urinary concentrations (through a collection of human biomonitoring data) with the lowest effective concentrations derived from in vitro cell assays. Our results suggest a potentially high concern for the risk of inhibition of the FSHR pathway. This global approach based on FSHR activity could enable the rapid characterization of the toxicity of halogenated BPA derivatives (or other compounds) and assess the associated risk of exposure to these halogenated BPA derivatives.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Simulação de Acoplamento Molecular , Fenóis , Receptores do FSH , Humanos , Fenóis/toxicidade , Fenóis/química , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Receptores do FSH/metabolismo , Medição de Risco , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Halogenação , Células HEK293 , Simulação de Dinâmica Molecular
17.
J Agric Food Chem ; 72(37): 20633-20645, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230979

RESUMO

The neurotoxicity of bisphenol A (BPA) exposure has been confirmed in vitro and in vivo, and inflammatory response is considered the main pathway. Green tea is a healthy life habit as it is rich in various anti-inflammatory components. To confirm that green tea diet is an effective measure to antagonize BPA-induced neurotoxicity, mice were treated with 0.5 and 5000 µg/kg/day of BPA from postnatal days (PNDs) 10-50 and supplemented with green tea on PND 21. From PND 51, behavioral tests were conducted on mice to assess their emotional, cognitive, and spatial learning memory capabilities. The open field test and elevated plus maze test indicated anxiety-like behaviors induced by BPA. Interestingly, green tea diet significantly alleviated BPA-induced anxiety-like behaviors. Meanwhile, the green tea diet effectively reversed BPA-induced microglia activation and morphological changes in the hippocampus of mice. Molecularly, green tea inhibited hippocampal neuroinflammation of mice by reducing BPA-induced expressions of NLRP3, ASC, cleaved-caspase-1, GSDMD-N, IL-6, and IL-1ß, as well as significantly reducing the expression of Bak1, Bax, caspase-9, and Cytc c genes (p < 0.05). Molecular docking suggests that various anti-inflammatory components of green tea can competitively bind to the estrogen receptors with BPA. In general, a green tea diet alleviates BPA-induced emotional disorders by inhibiting microglial polarization and hippocampal pyroptosis, indicating its effective antagonistic ability against the neurotoxicity induced by environmental BPA exposure.


Assuntos
Compostos Benzidrílicos , Hipocampo , Simulação de Acoplamento Molecular , Fenóis , Chá , Animais , Compostos Benzidrílicos/toxicidade , Camundongos , Fenóis/química , Chá/química , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Camellia sinensis/química , Camundongos Endogâmicos ICR , Feminino
18.
Biomolecules ; 14(9)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39334898

RESUMO

Sundews (Drosera sp.) are the source of biologically active secondary metabolites: phenolic acids, flavonoids, and 1,4-naphtoquinones. Because obtaining them from the natural environment is impossible (rare and endangered species), in this study modifications of traditional tissue cultures grown in solid medium (SM), such as agitated cultures (ACs) (cultures in liquid medium with rotary shaking) and temporary immersion bioreactors PlantformTM (TIB), were used for multiplication of four sundew species: Drosera peltata, Drosera indica, Drosera regia, and Drosera binata, with simultaneously effective synthesis of biologically active phenolic compounds. Each species cultivated on SM, AC, and TIB was tested for biomass accumulation, the content of total phenols and selected phenolic derivative concentrations (DAD-HPLC), the productivity on of phenolic compounds, as well as its antibacterial activity against two human pathogens: Staphylococcus aureus and Escherichia coli. The results showed that the type of culture should be selected for each species separately. Phytochemical analyses showed that the synthesis of secondary metabolites from the groups of phenolic acids, flavonoids, and 1,4-naphthoquinones can be increased by modifying the cultivation conditions. D. regia turned out to be the richest in phenolic compounds, including 1,4-naphtoquinones: plumbagin and ramentaceone. Extracts from D. indica and D. regia tissue showed strong antibacterial activity against both pathogens. It has also been shown that the growth conditions of sundews can modify the level of secondary metabolites, and thus, their biological activity.


Assuntos
Antibacterianos , Drosera , Fenóis , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Fenóis/farmacologia , Fenóis/química , Drosera/química , Drosera/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Flavonoides/farmacologia , Flavonoides/química , Biomassa , Testes de Sensibilidade Microbiana , Reatores Biológicos
19.
Molecules ; 29(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39339344

RESUMO

The traditional Mongolian medicine Erdun-Uril is a conventional combination of 29 herbs commonly used for the treatment of cerebrovascular ailments. It has the effects of reducing inflammation, counteracting oxidative stress, and averting strokes caused by persistent cerebral hypoperfusion. Prior research on Erdun-Uril has predominantly concentrated on its pharmacodynamics and mechanism of action; however, there has been a lack of systematic and comprehensive investigation into its chemical constituents. Therefore, it is crucial to establish an efficient and rapid method for evaluating the chemical constituents of Erdun-Uril. In this study, Erdun-Uril was investigated using UHPLC-Q-Exactive Orbitrap MS combined with parallel reaction monitoring for the first time. Eventually, a total of 237 compounds, including 76 flavonoids, 68 phenolic compounds, 19 alkaloids, 7 amino acids, etc., were identified based on the chromatographic retention time, bibliography data, MS/MS2 information, neutral loss fragments (NLFs), and diagnostic fragment ions (DFIs). And of these, 225 were reported for the first time in this study. This new discovery of these complex components would provide a reliable theoretical basis for the development of pharmacodynamics and quality standards of the Mongolian medicine Erdun-Uril.


Assuntos
Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Medicina Tradicional da Mongólia , Flavonoides/análise , Flavonoides/química , Alcaloides/análise , Alcaloides/química , Fenóis/análise , Fenóis/química , Espectrometria de Massas em Tandem/métodos
20.
Sci Rep ; 14(1): 22023, 2024 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322745

RESUMO

Chia seeds are currently gaining popularity as functional and healthy foods. The developed chia 7-day sprout phenolic extract (CSP) is an abundant supply of highly concentrated antioxidant phenolic compounds with health-promoting and antibacterial properties. The easy destruction against different environmental changes and low bioavailability of these phenolic compounds are the main limitations of their applications/utilization. This study aims to microencapsulate the phenolic compounds of developed CSP for use as valuable functional food additives. Three microcapsules were prepared using coating materials, chia gum (CG), gelatin (G), and their mixture (CG/G) via the freeze-drying technique. The prepared CG-, CG/G-, and G-microcapsules demonstrated high encapsulation efficiency percentages of 97.0, 98.1, and 94.5%, respectively. They retained most of the CSP-phenolics (91.4-97.2%) and increased total antioxidant activity (108-127.1%). The prepared microcapsules released more CSP-phenolic compounds into the simulated intestinal stage (70-82%) than the gastric stage (15-24%), demonstrating that the coating materials enhance protection during the gastric stage. The produced microcapsules exhibited higher storage stability at 40 °C for 60 days than the non-capsulated CSP, indicating that the encapsulation provided enhanced stability. The prepared microcapsules microstructures showed uniform, smoother surfaces, and hidden micropores compared to their coating material microstructures. In addition, the connection between the functional groups of coating materials and CSP-phenolic compounds was demonstrated by FTIR analysis. The prepared CG-, CG/G-, and G-microcapsules can perfectly inhibit the α-amylase and α-glucosidase activities by 65, 68, 60 and 74, 78, and 70%, respectively, compared to CSP (54, and 66%). The three prepared microcapsules displayed better antibacterial with low MBC values (0.36-0.68 mg ml-1) compared to CSP (0.53-0.74 mg ml-1). The prepared CSP microcapsules can be incorporated into various food products to enhance their antioxidant, antidiabetic, and antibacterial properties.


Assuntos
Antibacterianos , Antioxidantes , Disponibilidade Biológica , Gelatina , Hipoglicemiantes , Fenóis , Gelatina/química , Antioxidantes/química , Antioxidantes/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Fenóis/química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Cápsulas , Gomas Vegetais/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Composição de Medicamentos/métodos , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA