Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proteins ; 84(4): 448-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26800223

RESUMO

Genetic experiments with full length AraC and biophysical experiments with its dimerization domain plus linker suggest that arabinose binding to the dimerization domain changes the properties of the inter-domain linker which connects the dimerization domain to the DNA binding domain via interactions that do not depend on the DNA binding domain. Normal AraC function was found to tolerate considerable linker sequence alteration excepting proline substitutions. The proline substitutions partially activate transcription even in the absence of arabinose and hint that a structural shift between helix and coil may be involved. To permit fluorescence anisotropy measurements that could detect arabinose-dependent dynamic differences in the linkers, IAEDANS was conjugated to a cysteine residue substituted at the end of the linker of dimerization domain. Arabinose, but not other sugars, decreased the steady-state anisotropy, indicating either an increase in mobility and/or an increase in the fluorescence lifetime of the IAEDANS. Time-resolved fluorescence measurements showed that the arabinose-induced anisotropy decrease did not result from an increase in the excited-state lifetime. Hence arabinose-induced decreases in anisotropy appear to result from increased tumbling of the fluorophore. Arabinose did not decrease the anisotropy in mutants incapable of binding arabinose nor did it alter the anisotropy when IAEDANS was conjugated elsewhere in the dimerization domain. Experiments with heterodimers of the dimerization domain showed that the binding of arabinose to one subunit of the dimer decreases the fluorescence anisotropy of only a fluorophore on the linker of the other subunit.


Assuntos
Fator de Transcrição AraC/química , Arabinose/química , Cisteína/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Prolina/química , Subunidades Proteicas/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Fator de Transcrição AraC/genética , Fator de Transcrição AraC/metabolismo , Arabinose/metabolismo , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Polarização de Fluorescência , Expressão Gênica , Mutação , Naftalenossulfonatos/química , Prolina/metabolismo , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Termodinâmica
2.
J Biomed Biotechnol ; 2012: 103132, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505803

RESUMO

Currently, about 20 crystal structures per day are released and deposited in the Protein Data Bank. A significant fraction of these structures is produced by research groups associated with the structural genomics consortium. The biological function of many of these proteins is generally unknown or not validated by experiment. Therefore, a growing need for functional prediction of protein structures has emerged. Here we present an integrated bioinformatics method that combines sequence-based relationships and three-dimensional (3D) structural similarity of transcriptional regulators with computer prediction of their cognate DNA binding sequences. We applied this method to the AraC/XylS family of transcription factors, which is a large family of transcriptional regulators found in many bacteria controlling the expression of genes involved in diverse biological functions. Three putative new members of this family with known 3D structure but unknown function were identified for which a probable functional classification is provided. Our bioinformatics analyses suggest that they could be involved in plant cell wall degradation (Lin2118 protein from Listeria innocua, PDB code 3oou), symbiotic nitrogen fixation (protein from Chromobacterium violaceum, PDB code 3oio), and either metabolism of plant-derived biomass or nitrogen fixation (protein from Rhodopseudomonas palustris, PDB code 3mn2).


Assuntos
Fator de Transcrição AraC/classificação , Biologia Computacional/métodos , Anotação de Sequência Molecular/métodos , Fatores de Transcrição/classificação , Sequência de Aminoácidos , Fator de Transcrição AraC/química , Sítios de Ligação , Análise por Conglomerados , Bases de Dados de Proteínas , Modelos Moleculares , Modelos Estatísticos , Dados de Sequência Molecular , Alinhamento de Sequência , Fatores de Transcrição/química
3.
Genetica ; 133(1): 65-76, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17712603

RESUMO

The AraC/XylS family of transcription factors, which include proteins that are involved in the regulation of diverse biological processes, has been of considerable interest recently and has been constantly expanding by means of in silico predictions and experimental analysis. In this work, using a HMM based on the DNA binding domain of 58 experimentally characterized proteins from the AraC/XylS (A/X), 1974 A/X proteins were found in 149 out of 212 bacterial genomes. This domain was used as a template to generate a phylogenetic tree and as a tool to predict the putative regulatory role of the new members of this family based on their proximity to a particular functional cluster in the tree. Based on this approach we assigned a functional regulatory role for 75% of the TFs dataset. Of these, 33.7% regulate genes involved in carbon-source catabolism, 9.6% global metabolism, 8.3% nitrogen metabolism, 2.9% adaptation responses, 8.9% stress responses, and 11.7% virulence. The abundance of TFs involved in the regulation of metabolic processes indicates that bacteria have optimized their regulatory systems to control energy uptake. In contrast, the lower percentage of TFs required for stress, adaptation and virulence regulation reflects the specialization acquired by each subset of TFs associated with those processes. This approach would be useful in assigning regulatory roles to uncharacterized members of other transcriptional factor families and it might facilitate their experimental analysis.


Assuntos
Fator de Transcrição AraC/química , Fator de Transcrição AraC/metabolismo , Família Multigênica/genética , Fator de Transcrição AraC/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidade , Evolução Molecular , Genoma Bacteriano/genética , Filogenia , Estrutura Terciária de Proteína/genética , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA