Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 970
Filtrar
1.
Nat Commun ; 15(1): 7967, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261498

RESUMO

Microtubule-based vesicle trafficking usually relies upon kinesin and dynein motors and few reports describe microtubule polymerisation driving directional vesicle trafficking. Here we show that Arabidopsis END BINDING1b (EB1b), a microtubule plus-end binding protein, directly interacts with SYP121, a SNARE protein that mediates the trafficking of the K+ channel KAT1 and its distribution to the plasma membrane (PM) in Arabidopsis guard cells. Knockout of AtEB1b and its homologous proteins results in a modest but significant change in the distribution of KAT1 and SYP121 in guard cells and consequently delays light-induced stomatal opening. Live-cell imaging reveals that a portion of SYP121-associated endomembrane compartments co-localise with AtEB1b at the growing ends of microtubules, trafficking along with the growth of microtubules for targeting to the PM. Our study reveals a mechanism of vesicle trafficking driven by microtubule growth, which is involved in the redistribution of PM proteins to modulate guard cell movement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Proteínas Associadas aos Microtúbulos , Microtúbulos , Estômatos de Plantas , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Microtúbulos/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Membrana Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Transporte Proteico , Katanina/metabolismo , Katanina/genética , Movimento Celular , Proteínas de Ciclo Celular
2.
Proc Natl Acad Sci U S A ; 121(39): e2402233121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284054

RESUMO

A fundamental assumption in plant science posits that leaf air spaces remain vapor saturated, leading to the predominant view that stomata alone control leaf water loss. This concept has been pivotal in photosynthesis and water-use efficiency research. However, recent evidence has refuted this longstanding assumption by providing evidence of unsaturation in the leaf air space of C3 plants under relatively mild vapor pressure deficit (VPD) stress. This phenomenon represents a nonstomatal mechanism restricting water loss from the mesophyll. The potential ubiquity and physiological implications of this phenomenon, its driving mechanisms in different plant species and habitats, and its interaction with other ecological adaptations have. In this context, C4 plants spark particular interest for their importance as crops, bundle sheath cells' unique anatomical characteristics and specialized functions, and notably higher water-use efficiency relative to C3 plants. Here, we confirm reduced relative humidities in the substomatal cavity of the C4 plants maize, sorghum, and proso millet down to 80% under mild VPD stress. We demonstrate the critical role of nonstomatal control in these plants, indicating that the role of the CO2 concentration mechanism in CO2 management at a high VPD may have been overestimated. Our findings offer a mechanistic reconciliation between discrepancies in CO2 and VPD responses reported in C4 species. They also reveal that nonstomatal control is integral to maintaining an advantageous microclimate of relatively higher CO2 concentrations in the mesophyll air space of C4 plants for carbon fixation, proving vital when these plants face VPD stress.


Assuntos
Células do Mesofilo , Fotossíntese , Pressão de Vapor , Zea mays , Células do Mesofilo/metabolismo , Zea mays/fisiologia , Zea mays/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Água/metabolismo , Estresse Fisiológico/fisiologia , Dióxido de Carbono/metabolismo , Sorghum/metabolismo , Sorghum/fisiologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/metabolismo
3.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337538

RESUMO

Drought stress seriously threatens plant growth. The improvement of plant water use efficiency (WUE) and drought tolerance through stomatal regulation is an effective strategy for coping with water shortages. Epidermal patterning factor (EPF)/EPF-like (EPFL) family proteins regulate stomatal formation and development in plants and thus contribute to plant stress adaptation. Here, our analysis revealed the presence of 14 PeEPF members in the Populus euphratica genome, which exhibited a relatively conserved gene structure with 1-3 introns. Subcellular localisation prediction revealed that 9 PeEPF members were distributed in the chloroplasts of P. euphratica, and 5 were located extracellularly. Phylogenetic analysis indicated that PeEPFs can be divided into three clades, with genes within the same clade revealing a relatively conserved structure. Furthermore, we observed the evolutionary conservation of PeEPFs and AtEPF/EPFLs in certain domains, which suggests their conserved function. The analysis of cis-acting elements suggested the possible involvement of PeEPFs in plant response to multiple hormones. Transcriptomic analysis revealed considerable changes in the expression level of PeEPFs during treatment with polyethylene glycol and abscisic acid. The overexpression of PeEPF2 resulted in low stomatal density in transgenetic lines. These findings provide a basis for gaining insights into the function of PeEPFs in response to abiotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estômatos de Plantas , Populus , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genômica/métodos , Família Multigênica , Estresse Fisiológico/genética , Secas
4.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337563

RESUMO

Maize (Zea mays L.) is sensitive to salt stress, especially during seed germination and seedling morphogenesis, which limits maize growth and productivity formation. As a novel recognized plant hormone, melatonin (MT) participates in multiple growth and developmental processes and mediates biotic/abiotic stress responses, yet the effects of salt stress on maize seedlings remain unclear. Herein, we investigated the effects of 150 µM exogenous MT on multiple phenotypes and physiologic metabolisms in three-leaf seedlings across eight maize inbred lines under 180 mM NaCl salt stress, including growth parameters, stomatal morphology, photosynthetic metabolisms, antioxidant enzyme activities, and reactive oxygen species (ROS). Meanwhile, the six gene expression levels controlling antioxidant enzyme activities and photosynthetic pigment biosynthesis in two materials with contrasting salt resistance were examined for all treatments to explore the possible molecular mechanism of exogenous MT alleviating salt injury in maize. The results showed that 150 µM exogenous MT application protected membrane integrity and reduced ROS accumulation by activating the antioxidant system in leaves of maize seedlings under salt stress, their relative conductivity and H2O2 level average reduced by 20.91% and 17.22%, while the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) averaged increased by 13.90%, 17.02%, 22.00%, and 14.24% relative to salt stress alone. The improvement of stomatal size and the deposition of photosynthetic pigments were more favorable to enhancing photosynthesis in leaves when these seedlings treated with MT application under salt stress, their stomatal size, chlorophyll content, and net photosynthetic rate averaged increased by 11.60%, 19.64%, and 27.62%. Additionally, Gene expression analysis showed that MT stimulation significantly increased the expression of antioxidant enzyme genes (Zm00001d009990, Zm00001d047479, Zm00001d014848, and Zm00001d007234) and photosynthetic pigment biosynthesis genes (Zm00001d011819 and Zm00001d017766) under salt stress. At the same time, 150 µM MT significantly promoted seedling growth and biomass accumulation. In conclusion, our study may unravel crucial evidence of the role of MT in maize seedlings against salt stress, which can provide a novel strategy for improving maize salt stress resistance.


Assuntos
Antioxidantes , Melatonina , Fotossíntese , Estômatos de Plantas , Espécies Reativas de Oxigênio , Estresse Salino , Plântula , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Melatonina/farmacologia , Melatonina/metabolismo , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos
5.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166983

RESUMO

Grasses form morphologically derived, four-celled stomata, where two dumbbell-shaped guard cells (GCs) are flanked by two lateral subsidiary cells (SCs). This innovative form enables rapid opening and closing kinetics and efficient plant-atmosphere gas exchange. The mobile bHLH transcription factor MUTE is required for SC formation in grasses. Yet whether and how MUTE also regulates GC development and whether MUTE mobility is required for SC recruitment is unclear. Here, we transgenically impaired BdMUTE mobility from GC to SC precursors in the emerging model grass Brachypodium distachyon. Our data indicate that reduced BdMUTE mobility severely affected the spatiotemporal coordination of GC and SC development. Furthermore, although BdMUTE has a cell-autonomous role in GC division orientation, complete dumbbell morphogenesis of GCs required SC recruitment. Finally, leaf-level gas exchange measurements showed that dosage-dependent complementation of the four-celled grass morphology was mirrored in a gradual physiological complementation of stomatal kinetics. Together, our work revealed a dual role of grass MUTE in regulating GC division orientation and SC recruitment, which in turn is required for GC morphogenesis and the rapid kinetics of grass stomata.


Assuntos
Brachypodium , Estômatos de Plantas , Brachypodium/crescimento & desenvolvimento , Brachypodium/genética , Brachypodium/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Estômatos de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
6.
PLoS Biol ; 22(8): e3002770, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39150946

RESUMO

The development of multicellular organisms requires coordinated changes in gene expression that are often mediated by the interaction between transcription factors (TFs) and their corresponding cis-regulatory elements (CREs). During development and differentiation, the accessibility of CREs is dynamically modulated by the epigenome. How the epigenome, CREs, and TFs together exert control over cell fate commitment remains to be fully understood. In the Arabidopsis leaf epidermis, meristemoids undergo a series of stereotyped cell divisions, then switch fate to commit to stomatal differentiation. Newly created or reanalyzed scRNA-seq and ChIP-seq data confirm that stomatal development involves distinctive phases of transcriptional regulation and that differentially regulated genes are bound by the stomatal basic helix-loop-helix (bHLH) TFs. Targets of the bHLHs often reside in repressive chromatin before activation. MNase-seq evidence further suggests that the repressive state can be overcome and remodeled upon activation by specific stomatal bHLHs. We propose that chromatin remodeling is mediated through the recruitment of a set of physical interactors that we identified through proximity labeling-the ATPase-dependent chromatin remodeling SWI/SNF complex and the histone acetyltransferase HAC1. The bHLHs and chromatin remodelers localize to overlapping genomic regions in a hierarchical order. Furthermore, plants with stage-specific knockdown of the SWI/SNF components or HAC1 fail to activate specific bHLH targets and display stomatal development defects. Together, these data converge on a model for how stomatal TFs and epigenetic machinery cooperatively regulate transcription and chromatin remodeling during progressive fate specification.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Cromatina/metabolismo
7.
Plant Physiol Biochem ; 214: 108889, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38954945

RESUMO

Abscisic acid (ABA) is crucial for plant water deficit (WD) acclimation, but how the interplay between ABA and guard cell (GC) metabolism aids plant WD acclimation remains unclear. Here, we investigated how ABA regulates GC metabolism and how this contributes to plant WD acclimation using tomato wild type (WT) and the ABA-deficient sitiens mutant. These genotypes were characterized at physiological, metabolic, and transcriptional levels under recurring WD periods and were used to perform a13C-glucose labelling experiment using isolated guard cells following exogenously applied ABA. ABA deficiency altered the level of sugars and organic acids in GCs in both irrigated and WD plants and the dynamic of accumulation/degradation of these compounds in GCs during the dark-to-light transition. WD-induced metabolic changes were more pronounced in sitiens than WT GCs. Results from the 13C-labelling experiment indicate that ABA is required for the glycolytic fluxes toward malate and acts as a negative regulator of a putative sucrose substrate cycle. The expression of key ABA-biosynthetic genes was higher in WT than in sitiens GCs after two cycles of WD. Additionally, the intrinsic leaf water use efficiency increased only in WT after the second WD cycle, compared to sitiens. Our results highlight that ABA deficiency disrupts the homeostasis of GC primary metabolism and the WD memory, negatively affecting plant WD acclimation. Our study demonstrates which metabolic pathways are activated by WD and/or regulated by ABA in GCs, which improves our understanding of plant WD acclimation, with clear consequences for plant metabolic engineering in the future.


Assuntos
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
8.
Environ Res ; 261: 119673, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39067803

RESUMO

Ozone uptake through the stomata in tree leaves is an important process for improving air quality by urban trees. Stomatal conductance (gs) is a key determinant of stomatal ozone uptake. The parameterization of gs models for estimating stomatal ozone uptake of trees has mainly been carried out using gs data measured in seedling leaves although the leaf traits may differ between mature trees and seedlings. In the present study, we compared stomatal ozone uptake estimated by gs models parameterised with data from mature trees and seedlings of Zelkova serrata. We measured gs in leaves of mature trees and seedlings of Z. serrata using a leaf porometer for 3-4 growing seasons. The Jarvis-type gs model was parameterised with data from mature trees and seedlings, separately. The maximum gs, and the functions of the seedling gs estimation model regarding the response to air temperature, vapour pressure deficit and atmospheric ozone concentration were the factors inducing lower stomatal ozone uptake. In contrast, the function of the seedling gs estimation model regarding the response to irradiance resulted in a higher estimated stomatal ozone uptake. The estimated stomatal ozone uptake for one growing season (April-September) by the seedling gs estimation model was 27% lower than that by the mature tree gs estimation model. These results indicate that leaf gas exchange traits of Z. serrata were different between mature trees and seedlings, and that estimating ozone uptake in mature tree leaves using a model based on seedling gs measurements results in an underestimation.


Assuntos
Ozônio , Estômatos de Plantas , Plântula , Ozônio/metabolismo , Plântula/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Folhas de Planta/metabolismo , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/análise , Ulmaceae/metabolismo , Árvores/metabolismo
9.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000082

RESUMO

Drought stress is one of the significant abiotic stresses that limit soybean (Glycine max [L.] Merr.) growth and production. Ankyrin repeat (ANK) proteins, being highly conserved, occupy a pivotal role in diverse biological processes. ANK genes were classified into nine subfamilies according to conserved domains in the soybean genome. However, the function of ANK-TM subfamily proteins (Ankyrin repeat proteins with a transmembrane domain) in the abiotic-stress response to soybean remains poorly understood. In this study, we first demonstrated the subcellular localization of GmANKTM21 in the cell membrane and nucleus. Drought stress-induced mRNA levels of GmANKTM21, which encodes proteins belonging to the ANK-TM subfamily, Transgenic 35S:GmANKTM21 soybean improved drought tolerance at the germination and seedling stages, with higher stomatal closure in soybean, lower water loss, lower malondialdehyde (MDA) content, and less reactive oxygen species (ROS) production compared with the wild-type soybean (Dongnong50). RNA-sequencing (RNA-seq) and RT-qPCR analysis of differentially expressed transcripts in overexpression of GmANKTM21 further identified potential downstream genes, including GmSPK2, GmSPK4, and GmCYP707A1, which showed higher expression in transgenic soybean, than those in wild-type soybean and KEGG enrichment analysis showed that MAPK signaling pathways were mostly enriched in GmANKTM21 overexpressing soybean plants under drought stress conditions. Therefore, we demonstrate that GmANKTM21 plays an important role in tolerance to drought stress in soybeans.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Glycine max , Sistema de Sinalização das MAP Quinases , Proteínas de Plantas , Estômatos de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Glycine max/genética , Glycine max/metabolismo , Glycine max/fisiologia , Glycine max/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estômatos de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Repetição de Anquirina/genética , Resistência à Seca
10.
Proc Natl Acad Sci U S A ; 121(29): e2323040121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985761

RESUMO

Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estômatos de Plantas , Transdução de Sinais , Fosforilação , Estômatos de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Domínios Proteicos , Mutação
11.
Environ Res ; 258: 119464, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908659

RESUMO

Leaf ozone uptake through the stomata is an important index for the ozone risk assessments on trees. Stomatal conductance (gs) and ozone concentration ([O3]), determinants of the leaf ozone uptake, are known to show vertical gradients within a tree canopy. However, less is known about the within-canopy vertical gradient of leaf ozone uptake. This study was aimed to elucidate how the vertical gradient of [O3] and gs affect needle ozone uptake within a canopy of mature Cryptomeria japonica trees in a suburban forest at Tokyo, Japan. For this purpose, a multilayer gas exchange model was applied to estimate the vertical gradient of needle gs and the accumulated ozone uptake during the study period (POD1, Phytotoxic Ozone Dose above a threshold of 1 nmol m-2 s-1). In addition, we also tested several scenarios of vertical gradient of [O3] within the canopy for sensitivity analysis. The POD1 was declined from the top to the bottom of the canopy. This tendency strongly depended on the vertical gradient of gs and was hardly affected by the changes in simulated vertical reductions of the [O3]. We further assessed the photosynthesis of sunlit needles (needles absorbing both direct and diffuse light) and shaded needles (needles only absorbing diffuse light). The photosynthesis of shaded needles in the upper half of the canopy made a great contribution to the entire canopy photosynthesis. In addition, given that their POD1 was lower than that of sunlit needles, ozone may affect sunlit and shaded needles differently. We concluded that these considerations should be incorporated into modeling of the calculation of ozone uptake for mature trees to make accurate predictions of the ozone effects on trees at the canopy scale.


Assuntos
Poluentes Atmosféricos , Cryptomeria , Ozônio , Folhas de Planta , Ozônio/análise , Folhas de Planta/metabolismo , Poluentes Atmosféricos/análise , Fotossíntese/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos
12.
Nat Commun ; 15(1): 4898, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851785

RESUMO

Developing artificial leaves to address the environmental burden of CO2 is pivotal for advancing our Net Zero Future. In this study, we introduce EcoLeaf, an artificial leaf that closely mimics the characteristics of natural leaves. It harnesses visible light as its sole energy source and orchestrates the controlled expansion and contraction of stomata and the exchange of petiole materials to govern the rate of CO2 sequestration from the atmosphere. Furthermore, EcoLeaf has a cellulose composition and mechanical strength similar to those of natural leaves, allowing it to seamlessly integrate into the ecosystem during use and participate in natural degradation and nutrient cycling processes at the end of its life. We propose that the carbon sequestration pathway within EcoLeaf is adaptable and can serve as a versatile biomimetic platform for diverse biogenic carbon sequestration pathways in the future.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Celulose , Folhas de Planta , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Folhas de Planta/metabolismo , Celulose/metabolismo , Celulose/química , Ecossistema , Estômatos de Plantas/metabolismo , Fotossíntese , Luz
14.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891859

RESUMO

Abscisic acid (ABA) is a drought-stress-responsive hormone that plays an important role in the stomatal activity of plant leaves. Currently, ABA glycosides have been identified in apples, but their glycosyltransferases for glycosylation modification of ABA are still unidentified. In this study, the mRNA expression of glycosyltransferase gene MdUGT73AR4 was significantly up-regulated in mature apple leaves which were treated in drought stress by Real-Time PCR. It was hypothesised that MdUGT73AR4 might play an important role in drought stress. In order to further characterise the glycosylation modification substrate of glycosyltransferase MdUGT73AR4, we demonstrated through in vitro and in vivo functional validation that MdUGT73AR4 can glycosylate ABA. Moreover, the overexpression lines of MdUGT73AR4 significantly enhance its drought stress resistance function. We also found that the adversity stress transcription factor AREB1B might be an upstream transcription factor of MdUGT73AR4 by bioinformatics, EMSA, and ChIP experiments. In conclusion, this study found that the adversity stress transcription factor AREB1B was significantly up-regulated at the onset of drought stress, which in turn positively regulated the downstream glycosyltransferase MdUGT73AR4, causing it to modify ABA by mass glycosylation and promoting the ABA synthesis pathway, resulting in the accumulation of ABA content, and displaying a stress-resistant phenotype.


Assuntos
Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Glicosiltransferases , Malus , Proteínas de Plantas , Estômatos de Plantas , Estresse Fisiológico , Ácido Abscísico/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Malus/metabolismo , Malus/genética , Malus/fisiologia , Glicosilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética
15.
Nat Commun ; 15(1): 5081, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38876991

RESUMO

Stomatal movement is vital for plants to exchange gases and adaption to terrestrial habitats, which is regulated by environmental and phytohormonal signals. Here, we demonstrate that hydrogen peroxide (H2O2) is required for light-induced stomatal opening. H2O2 accumulates specifically in guard cells even when plants are under unstressed conditions. Reducing H2O2 content through chemical treatments or genetic manipulations results in impaired stomatal opening in response to light. This phenomenon is observed across different plant species, including lycopodium, fern, and monocotyledonous wheat. Additionally, we show that H2O2 induces the nuclear localization of KIN10 protein, the catalytic subunit of plant energy sensor SnRK1. The nuclear-localized KIN10 interacts with and phosphorylates the bZIP transcription factor bZIP30, leading to the formation of a heterodimer between bZIP30 and BRASSINAZOLE-RESISTANT1 (BZR1), the master regulator of brassinosteroid signaling. This heterodimer complex activates the expression of amylase, which enables guard cell starch degradation and promotes stomatal opening. Overall, these findings suggest that H2O2 plays a critical role in light-induced stomatal opening across different plant species.


Assuntos
Peróxido de Hidrogênio , Luz , Estômatos de Plantas , Estômatos de Plantas/efeitos da radiação , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Peróxido de Hidrogênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia , Triticum/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transdução de Sinais , Fosforilação , Gleiquênias/metabolismo , Gleiquênias/efeitos da radiação , Gleiquênias/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética
16.
Curr Biol ; 34(14): 3102-3115.e6, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38944035

RESUMO

By modulating stomatal opening and closure, plants control gas exchange, water loss, and photosynthesis in response to various environmental signals. During light-induced stomatal opening, the transport of ions and solutes across the plasma membrane (PM) of the surrounding guard cells results in an increase in turgor pressure, leading to cell swelling. Simultaneously, vesicles for exocytosis are delivered via membrane trafficking to compensate for the enlarged cell surface area and maintain an appropriate ion-channel density in the PM. In eukaryotic cells, soluble N-ethylmaleimide-sensitive factor adaptor protein receptors (SNAREs) mediate membrane fusion between vesicles and target compartments by pairing the cognate glutamine (Q)- and arginine (R)-SNAREs to form a core SNARE complex. Syntaxin of plants 121 (SYP121) is a known Q-SNARE involved in stomatal movement, which not only facilitates the recycling of K+ channels to the PM but also binds to the channels to regulate their activity. In this study, we found that the expression of a receptor-like cytoplasmic kinase, low-K+ sensitive 4/schengen 1 (LKS4/SGN1), was induced by light; it directly interacted with SYP121 and phosphorylated T270 within the SNARE motif. Further investigation revealed that LKS4-dependent phosphorylation of SYP121 facilitated the interaction between SYP121 and R-SNARE vesicle-associated membrane protein 722 (VAMP722), promoting the assembly of the SNARE complex. Our findings demonstrate that the phosphorylation of SNARE proteins is an important strategy adopted by plants to regulate the SNARE complex assembly as well as membrane fusion. Additionally, we discovered the function of LKS4/SGN1 in light-induced stomatal opening via the phosphorylation of SYP121.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Luz , Estômatos de Plantas , Proteínas Qa-SNARE , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estômatos de Plantas/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação , Fosforilação , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Proteínas de Ciclo Celular
17.
PLoS Biol ; 22(5): e3002592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691548

RESUMO

Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.


Assuntos
Arabidopsis , Dióxido de Carbono , Modelos Biológicos , Estômatos de Plantas , Transdução de Sinais , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Simulação por Computador , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
18.
Nat Commun ; 15(1): 4540, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811542

RESUMO

Stomata govern the gaseous exchange between the leaf and the external atmosphere, and their function is essential for photosynthesis and the global carbon and oxygen cycles. Rhythmic stomata movements in daily dark/light cycles prevent water loss at night and allow CO2 uptake during the day. How the actors involved are transcriptionally regulated and how this might contribute to rhythmicity is largely unknown. Here, we show that morning stomata opening depends on the previous night period. The transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) accumulate at the end of the night and directly induce the guard cell-specific K+ channel KAT1. Remarkably, PIFs and KAT1 are required for blue light-induced stomata opening. Together, our data establish a molecular framework for daily rhythmic stomatal movements under well-watered conditions, whereby PIFs are required for accumulation of KAT1 at night, which upon activation by blue light in the morning leads to the K+ intake driving stomata opening.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Luz , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Estômatos de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
19.
Biosci Biotechnol Biochem ; 88(8): 918-922, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777629

RESUMO

Chitosan (CHT) is a deacylated derivative of chitin and improves growth and yield performance, activates defensive genes, and also induces stomatal closure in plants. Glutathione (GSH) has significant functions in the growth, development, defense systems, signaling, and gene expression. GSH negatively regulates abscisic acid-, methyl jasmonate-, and salicylic acid-induced stomatal closure. However, the negative regulation by GSH of CHT-induced stomatal closure is still unknown. Regulation of CHT-induced stomatal closure by GSH in guard cells was investigated using two GSH-deficient mutants, cad2-1 and chlorina 1-1 (ch1-1), and a GSH-decreasing chemical, 1-chloro-2,4-dinitrobenzene (CDNB). The cad2-1 and ch1-1 mutations and CDNB treatment enhanced CHT-induced stomatal closure. Treatment with glutathione monoethyl ester restored the GSH level in the guard cells of cad2-1 and ch1-1 and complemented the stomatal phenotype of the mutants. These results indicate that GSH negatively regulates CHT-induced stomatal closure in Arabidopsis thaliana.


Assuntos
Arabidopsis , Quitosana , Glutationa , Estômatos de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Glutationa/metabolismo , Glutationa/análogos & derivados , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Quitosana/farmacologia , Mutação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dinitroclorobenzeno/farmacologia
20.
ACS Nano ; 18(22): 14276-14289, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781572

RESUMO

The frequency, duration, and intensity of heat waves (HWs) within terrestrial ecosystems are increasing, posing potential risks to agricultural production. Cerium dioxide nanoparticles (CeO2 NPs) are garnering increasing attention in the field of agriculture because of their potential to enhance photosynthesis and improve stress tolerance. In the present study, CeO2 NPs decreased the grain yield, grain protein content, and amino acid content by 16.2, 23.9, and 10.4%, respectively, under HW conditions. Individually, neither the CeO2 NPs nor HWs alone negatively affected rice production or triggered stomatal closure. However, under HW conditions, CeO2 NPs decreased the stomatal conductance and net photosynthetic rate by 67.6 and 33.5%, respectively. Moreover, stomatal closure in the presence of HWs and CeO2 NPs triggered reactive oxygen species (ROS) accumulation (increased by 32.3-57.1%), resulting in chloroplast distortion and reduced photosystem II activity (decreased by 9.4-36.4%). Metabolic, transcriptomic, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed that, under HW conditions, CeO2 NPs activated a stomatal closure pathway mediated by abscisic acid (ABA) and ROS by regulating gene expression (PP2C, NCED4, HPCA1, and RBOHD were upregulated, while CYP707A and ALMT9 were downregulated) and metabolite levels (the content of γ-aminobutyric acid (GABA) increased while that of gallic acid decreased). These findings elucidate the mechanism underlying the yield and nutritional losses induced by stomatal closure in the presence of CeO2 NPs and HWs and thus highlight the potential threat posed by CeO2 NPs to rice production during HWs.


Assuntos
Cério , Temperatura Alta , Nanopartículas , Oryza , Estômatos de Plantas , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Cério/química , Cério/farmacologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA