Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.182
Filtrar
1.
Nat Commun ; 15(1): 7967, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261498

RESUMO

Microtubule-based vesicle trafficking usually relies upon kinesin and dynein motors and few reports describe microtubule polymerisation driving directional vesicle trafficking. Here we show that Arabidopsis END BINDING1b (EB1b), a microtubule plus-end binding protein, directly interacts with SYP121, a SNARE protein that mediates the trafficking of the K+ channel KAT1 and its distribution to the plasma membrane (PM) in Arabidopsis guard cells. Knockout of AtEB1b and its homologous proteins results in a modest but significant change in the distribution of KAT1 and SYP121 in guard cells and consequently delays light-induced stomatal opening. Live-cell imaging reveals that a portion of SYP121-associated endomembrane compartments co-localise with AtEB1b at the growing ends of microtubules, trafficking along with the growth of microtubules for targeting to the PM. Our study reveals a mechanism of vesicle trafficking driven by microtubule growth, which is involved in the redistribution of PM proteins to modulate guard cell movement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Proteínas Associadas aos Microtúbulos , Microtúbulos , Estômatos de Plantas , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Microtúbulos/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Membrana Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Transporte Proteico , Katanina/metabolismo , Katanina/genética , Movimento Celular , Proteínas de Ciclo Celular
2.
Planta ; 260(4): 90, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256219

RESUMO

MAIN CONCLUSION: The high intrinsic water-use efficiency of Erianthus may be due to the low abaxial stomatal density and the accumulation of leaf metabolites such as betaine and gamma-aminobutyric acid. Sugarcane is an important crop that is widely cultivated in tropical and subtropical regions of the world. Because drought is among the main impediments limiting sugarcane production in these regions, breeding of drought-tolerant sugarcane varieties is important for sustainable production. Erianthus arundinaceus, a species closely related to sugarcane, exhibits high intrinsic water-use efficiency (iWUE), the underlying mechanisms for which remain unknown. To improve the genetic base for conferring drought tolerance in sugarcane, in the present study, we performed a comprehensive comparative analysis of leaf gas exchange and metabolites in different organs of sugarcane and Erianthus under wet and dry soil-moisture conditions. Erianthus exhibited lower stomatal conductance under both conditions, which resulted in a higher iWUE than in sugarcane. Organ-specific metabolites showed gradations between continuous parts and organs, suggesting linkages between them. Cluster analysis of organ-specific metabolites revealed the effects of the species and treatments in the leaves. Principal component analysis of leaf metabolites confirmed a rough ordering of the factors affecting their accumulations. Compared to sugarcane leaf, Erianthus leaf accumulated more raffinose, betaine, glutamine, gamma-aminobutyric acid, and S-adenosylmethionine, which function as osmolytes and stress-response compounds, under both the conditions. Our extensive analyses reveal that the high iWUE of Erianthus may be due to the specific accumulation of such metabolites in the leaves, in addition to the low stomatal density on the abaxial side of leaves. The identification of drought-tolerance traits of Erianthus will benefit the generation of sugarcane varieties capable of withstanding drought stress.


Assuntos
Secas , Folhas de Planta , Saccharum , Saccharum/genética , Saccharum/fisiologia , Saccharum/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Água/metabolismo , Água/fisiologia , Transpiração Vegetal/fisiologia
3.
Proc Natl Acad Sci U S A ; 121(39): e2402233121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284054

RESUMO

A fundamental assumption in plant science posits that leaf air spaces remain vapor saturated, leading to the predominant view that stomata alone control leaf water loss. This concept has been pivotal in photosynthesis and water-use efficiency research. However, recent evidence has refuted this longstanding assumption by providing evidence of unsaturation in the leaf air space of C3 plants under relatively mild vapor pressure deficit (VPD) stress. This phenomenon represents a nonstomatal mechanism restricting water loss from the mesophyll. The potential ubiquity and physiological implications of this phenomenon, its driving mechanisms in different plant species and habitats, and its interaction with other ecological adaptations have. In this context, C4 plants spark particular interest for their importance as crops, bundle sheath cells' unique anatomical characteristics and specialized functions, and notably higher water-use efficiency relative to C3 plants. Here, we confirm reduced relative humidities in the substomatal cavity of the C4 plants maize, sorghum, and proso millet down to 80% under mild VPD stress. We demonstrate the critical role of nonstomatal control in these plants, indicating that the role of the CO2 concentration mechanism in CO2 management at a high VPD may have been overestimated. Our findings offer a mechanistic reconciliation between discrepancies in CO2 and VPD responses reported in C4 species. They also reveal that nonstomatal control is integral to maintaining an advantageous microclimate of relatively higher CO2 concentrations in the mesophyll air space of C4 plants for carbon fixation, proving vital when these plants face VPD stress.


Assuntos
Células do Mesofilo , Fotossíntese , Pressão de Vapor , Zea mays , Células do Mesofilo/metabolismo , Zea mays/fisiologia , Zea mays/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Água/metabolismo , Estresse Fisiológico/fisiologia , Dióxido de Carbono/metabolismo , Sorghum/metabolismo , Sorghum/fisiologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/metabolismo
4.
Planta ; 260(5): 105, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325207

RESUMO

MAIN CONCLUSION: PATOL1 contributes to increasing biomass not only by effective stomatal movement but also by root meristematic activity. PATROL1 (PROTON ATPase TRANSLOCATION CONTROL 1), a protein with a MUN domain, is involved in the intercellular trafficking of AHA1 H+-ATPase to the plasma membrane in guard cells. This allows for larger stomatal opening and more efficient photosynthesis, leading to increased biomass. Although PATROL1 is expressed not only in stomata but also in other tissues of the shoot and root, the role in other tissues than stomata has not been determined yet. Here, we investigated PATROL1 functions in roots using a loss-of-function mutant and an overexpressor. Cytological observations revealed that root meristematic size was significantly smaller in the mutant resulting in the short primary root. Grafting experiments showed that the shoot biomass of the mutant scion was increased when it grafted onto wild-type or overexpressor rootstocks. Conversely, grafting of the overexpressor scion shoot enhanced the growth of the mutant rootstock. The leaf temperatures of the grafted plants were consistent with those of their respective genotypes, indicating cell-autonomous behavior of stomatal movement and independent roles of PATROL1 in plant growth. Moreover, plasma membrane localization of AHA1 was not altered in root epidermal cells in the patrol1 mutant implying existence of a different mode of PATROL1 action in roots. Thus PATROL1 plays a role in root meristem and contributes to increase shoot biomass.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Biomassa , Raízes de Plantas , Brotos de Planta , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/genética , Meristema/crescimento & desenvolvimento , Meristema/genética , Meristema/fisiologia , Membrana Celular/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Regulação da Expressão Gênica de Plantas , Mutação
5.
Plant J ; 120(1): 45-59, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126292

RESUMO

Stomatal movement plays a critical role in plant immunity by limiting the entry of pathogens. OPEN STOMATA 1 (OST1) is a key component that mediates stomatal closure in plants, however, how OST1 functions in response to pathogens is not well understood. RECEPTOR-LIKE KINASE 902 (RLK902) phosphorylates BRASSINOSTEROID-SIGNALING KINASE 1 (BSK1) and positively modulates plant resistance. In this study, by a genome-wide phosphorylation analysis, we found that the phosphorylation of BSK1 and OST1 was missing in the rlk902 mutant compared with the wild-type plants, indicating a potential connection between the RLK902-BSK1 module and OST1-mediated stomatal closure. We showed that RLK902 and BSK1 contribute to stomatal immunity, as the stomatal closure induced by the bacterial pathogen Pto DC3000 was impaired in rlk902 and bsk1-1 mutants. Stomatal immunity mediated by RLK902 was dependent on BSK1 phosphorylation at Ser230, a key phosphorylation site for BSK1 functions. Several phosphorylation sites of OST1 were important for RLK902- and BSK1-mediated stomatal immunity. Interestingly, the phosphorylation of Ser171 and Ser175 in OST1 contributed to the stomatal immunity mediated by RLK902 but not by BSK1, while phosphorylation of OST1 at Ser29 and Thr176 residues was critical for BSK1-mediated stomatal immunity. Taken together, these results indicate that RLK902 and BSK1 contribute to disease resistance via OST1-mediated stomatal closure. This work revealed a new function of BSK1 in activating stomatal immunity, and the role of RLK902-BSK1 and OST1 module in regulating pathogen-induced stomatal movement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Estômatos de Plantas , Proteínas Quinases , Estômatos de Plantas/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilação , Arabidopsis/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Mutação
6.
Planta ; 260(3): 67, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088064

RESUMO

MAIN CONCLUSION: Overexpression of VvmybA1 transcription factor in 'Hamlin' citrus enhances cold tolerance by increasing anthocyanin accumulation. This results in improved ROS scavenging, altered gene expression, and stomatal regulation, highlighting anthocyanins' essential role in citrus cold acclimation. Cold stress is a significant threat to citrus cultivation, impacting tree health and productivity. Anthocyanins are known for their role as pigments and have emerged as key mediators of plant defense mechanisms against environmental stressors. This study investigated the potential of anthocyanin overexpression regulated by grape (Vitis vinifera) VvmybA1 transcription factor to enhance cold stress tolerance in citrus trees. Transgenic 'Hamlin' citrus trees overexpressing VvmybA1 were exposed to a 30-day cold stress period at 4 °C along with the control wild-type trees. Our findings reveal that anthocyanin accumulation significantly influences chlorophyll content and their fluorescence parameters, affecting leaf responses to cold stress. Additionally, we recorded enhanced ROS scavenging capacity and distinct expression patterns of key transcription factors and antioxidant-related genes in the transgenic leaves. Furthermore, VvmybA1 overexpression affected stomatal aperture regulation by moderating ABA biosynthesis, resulting in differential responses in a stomatal opening between transgenic and wild-type trees under cold stress. Transgenic trees exhibited reduced hydrogen peroxide levels, enhanced flavonoids, radical scavenging activity, and altered phytohormonal profiles. These findings highlighted the role of VvmybA1-mediated anthocyanin accumulation in enhancing cold tolerance. The current study also underlines the potential of anthocyanin overexpression as a critical regulator of the cold acclimation process by scavenging ROS in plant tissues.


Assuntos
Antocianinas , Citrus sinensis , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Antocianinas/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Citrus sinensis/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Frio/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/genética , Vitis/fisiologia , Vitis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Clorofila/metabolismo , Temperatura Baixa , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
7.
New Phytol ; 244(1): 147-158, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096020

RESUMO

The onset of stomatal closure reduces transpiration during drought. In seed plants, drought causes declines in plant water status which increases leaf endogenous abscisic acid (ABA) levels required for stomatal closure. There are multiple possible points of increased belowground resistance in the soil-plant atmospheric continuum that could decrease leaf water potential enough to trigger ABA production and the subsequent decreases in transpiration. We investigate the dynamic patterns of leaf ABA levels, plant hydraulic conductance and the point of failure in the soil-plant conductance in the highly embolism-resistant species Callitris tuberculata using continuous dendrometer measurements of leaf water potential during drought. We show that decreases in transpiration and ABA biosynthesis begin before any permanent decreases in predawn water potential, collapse in soil-plant hydraulic pathway and xylem embolism spread. We find that a dynamic but recoverable increases in hydraulic resistance in the soil in close proximity to the roots is the most likely driver of declines in midday leaf water potential needed for ABA biosynthesis and the onset of decreases in transpiration.


Assuntos
Ácido Abscísico , Secas , Estômatos de Plantas , Transpiração Vegetal , Solo , Água , Estômatos de Plantas/fisiologia , Ácido Abscísico/metabolismo , Água/fisiologia , Água/metabolismo , Transpiração Vegetal/fisiologia , Xilema/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia
8.
Sci Total Environ ; 951: 175805, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39197757

RESUMO

Forests globally are experiencing severe droughts, leading to significant reductions in growth, crown dieback and even tree mortality. The ability of forest ecosystems to acclimate to prolonged and repeated droughts is critical for their survival with ongoing climate change. In a five-year throughfall exclusion experiment, we investigated the long-term physiological and morphological acclimation of mature Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to repeated summer drought at the leaf, shoot and whole tree level. Throughout the drought period, spruce reduced their total water use by 70 % to only 4-9 L per day and tree, while beech was less affected with about 30 % reduction of water use. During the first two summers, spruce achieved this by closing their stomata by up to 80 %. Additionally, from the second drought summer onwards, spruce produced shorter shoots and needles, resulting in a stepwise reduction of total leaf area of over 50 % by the end of the experiment. Surprisingly, no premature leaf loss was observed. This reduction in leaf area allowed a gradual increase in stomatal conductance. After the five-year drought experiment, water consumption per leaf area was the same as in the controls, while the total water consumption of spruce was still reduced. In contrast, beech showed no significant reduction in whole-tree leaf area, but nevertheless reduced water use by up to 50 % by stomatal closure. If the restriction of transpiration by stomatal closure is sufficient to ensure survival of Norway spruce during the first drought summers, then the slow but steady reduction in leaf area will ensure successful acclimation of water use, leading to reduced physiological drought stress and long-term survival. Neighboring beech appeared to benefit from the water-saving strategy of spruce by using the excess water.


Assuntos
Aclimatação , Mudança Climática , Secas , Fagus , Picea , Folhas de Planta , Estações do Ano , Fagus/fisiologia , Picea/fisiologia , Aclimatação/fisiologia , Folhas de Planta/fisiologia , Água , Estômatos de Plantas/fisiologia
9.
Nat Ecol Evol ; 8(9): 1641-1653, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117952

RESUMO

Dissecting plant responses to the environment is key to understanding whether and how plants adapt to anthropogenic climate change. Stomata, plants' pores for gas exchange, are expected to decrease in density following increased CO2 concentrations, a trend already observed in multiple plant species. However, it is unclear whether such responses are based on genetic changes and evolutionary adaptation. Here we make use of extensive knowledge of 43 genes in the stomatal development pathway and newly generated genome information of 191 Arabidopsis thaliana historical herbarium specimens collected over 193 years to directly link genetic variation with climate change. While we find that the essential transcription factors SPCH, MUTE and FAMA, central to stomatal development, are under strong evolutionary constraints, several regulators of stomatal development show signs of local adaptation in contemporary samples from different geographic regions. We then develop a functional score based on known effects of gene knock-out on stomatal development that recovers a classic pattern of stomatal density decrease over the past centuries, suggesting a genetic component contributing to this change. This approach combining historical genomics with functional experimental knowledge could allow further investigations of how different, even in historical samples unmeasurable, cellular plant phenotypes may have already responded to climate change through adaptive evolution.


Assuntos
Arabidopsis , Mudança Climática , Genoma de Planta , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Evolução Biológica
10.
Biol Res ; 57(1): 52, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127708

RESUMO

BACKGROUND: Common bean (Phaseolus vulgaris) is one of the main nutritional resources in the world, and a low environmental impact source of protein. However, the majority of its cultivation areas are affected by drought and this scenario is only expected to worsen with climate change. Stomatal closure is one of the most important plant responses to drought and the MYB60 transcription factor is among the key elements regulating stomatal aperture. If targeting and mutating the MYB60 gene of common bean would be a valuable strategy to establish more drought-tolerant beans was therefore investigated. RESULTS: The MYB60 gene of common bean, with orthology to the Arabidopsis AtMYB60 gene, was found to have conserved regions with MYB60 typical motifs and architecture. Stomata-specific expression of PvMYB60 was further confirmed by q-RT PCR on organs containing stomata, and stomata-enriched leaf fractions. Further, function of PvMYB60 in promoting stomata aperture was confirmed by complementing the defective phenotype of a previously described Arabidopsis myb60-1 mutant. CONCLUSIONS: Our study finally points PvMYB60 as a potential target for obtaining more drought-tolerant common beans in the present context of climate change which would further greatly contribute to food security particularly in drought-prone countries.


Assuntos
Mudança Climática , Resistência à Seca , Phaseolus , Arabidopsis/genética , Arabidopsis/fisiologia , Resistência à Seca/genética , Regulação da Expressão Gênica de Plantas/genética , Phaseolus/genética , Phaseolus/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Fatores de Transcrição/genética
11.
Physiol Plant ; 176(4): e14446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092508

RESUMO

Drought has a devastating impact, presenting a formidable challenge to agricultural productivity and global food security. Among the numerous ABC transporter proteins found in plants, the ABCG transporters play a crucial role in plant responses to abiotic stress. In Medicago sativa, the function of ABCG transporters remains elusive. Here, we report that MsABCG1, a WBC-type transporter highly conserved in legumes, is critical for the response to drought in alfalfa. MsABCG1 is localized on the plasma membrane, with the highest expression observed in roots under normal conditions, and its expression is induced by drought, NaCl and ABA signalling. In transgenic tobacco, overexpression of MsABCG1 enhanced drought tolerance, evidenced by increased osmotic regulatory substances and reduced lipid peroxidation. Additionally, drought stress resulted in reduced ABA accumulation in tobacco overexpressing MsABCG1, demonstrating that overexpression of MsABCG1 enhanced drought tolerance was not via an ABA-dependent pathway. Furthermore, transgenic tobacco exhibited increased stomatal density and reduced stomatal aperture under drought stress, indicating that MsABCG1 has the potential to participate in stomatal regulation during drought stress. In summary, these findings suggest that MsABCG1 significantly enhances drought tolerance in plants and provides a foundation for developing efficient drought-resistance strategies in crops.


Assuntos
Resistência à Seca , Medicago sativa , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Ácido Abscísico/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência à Seca/genética , Resistência à Seca/fisiologia , Regulação da Expressão Gênica de Plantas , Medicago sativa/genética , Medicago sativa/fisiologia , Medicago sativa/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Estresse Fisiológico/genética
12.
BMC Plant Biol ; 24(1): 736, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095719

RESUMO

BACKGROUND: Septoria tritici blotch (STB), caused by the foliar fungus Zymoseptoria tritici, is one of the most damaging disease of wheat in Europe. Genetic resistance against this fungus relies on different types of resistance from non-host resistance (NHR) and host species specific resistance (HSSR) to host resistance mediated by quantitative trait loci (QTLs) or major resistance genes (Stb). Characterizing the diversity of theses resistances is of great importance for breeding wheat cultivars with efficient and durable resistance. While the functional mechanisms underlying these resistance types are not well understood, increasing piece of evidence suggest that fungus stomatal penetration and early establishment in the apoplast are both crucial for the outcome of some interactions between Z. tritici and plants. To validate and extend these previous observations, we conducted quantitative comparative phenotypical and cytological analyses of the infection process corresponding to 22 different interactions between plant species and Z. tritici isolates. These interactions included four major bread wheat Stb genes, four bread wheat accessions with contrasting quantitative resistance, two species resistant to Z. tritici isolates from bread wheat (HSSR) and four plant species resistant to all Z. tritici isolates (NHR). RESULTS: Infiltration of Z. tritici spores into plant leaves allowed the partial bypass of all bread wheat resistances and durum wheat resistance, but not resistances from other plants species. Quantitative comparative cytological analysis showed that in the non-grass plant Nicotiana benthamiana, Z. tritici was stopped before stomatal penetration. By contrast, in all resistant grass plants, Z. tritici was stopped, at least partly, during stomatal penetration. The intensity of this early plant control process varied depending on resistance types, quantitative resistances being the least effective. These analyses also demonstrated that Stb-mediated resistances, HSSR and NHR, but not quantitative resistances, relied on the strong growth inhibition of the few Z. tritici penetrating hyphae at their entry point in the sub-stomatal cavity. CONCLUSIONS: In addition to furnishing a robust quantitative cytological assessment system, our study uncovered three stopping patterns of Z. tritici by plant resistances. Stomatal resistance was found important for most resistances to Z. tritici, independently of its type (Stb, HSSR, NHR). These results provided a basis for the functional analysis of wheat resistance to Z. tritici and its improvement.


Assuntos
Ascomicetos , Resistência à Doença , Doenças das Plantas , Estômatos de Plantas , Triticum , Ascomicetos/fisiologia , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Locos de Características Quantitativas , Interações Hospedeiro-Patógeno
13.
Glob Chang Biol ; 30(8): e17439, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092538

RESUMO

Heatwaves and soil droughts are increasing in frequency and intensity, leading many tree species to exceed their thermal thresholds, and driving wide-scale forest mortality. Therefore, investigating heat tolerance and canopy temperature regulation mechanisms is essential to understanding and predicting tree vulnerability to hot droughts. We measured the diurnal and seasonal variation in leaf water potential (Ψ), gas exchange (photosynthesis Anet and stomatal conductance gs), canopy temperature (Tcan), and heat tolerance (leaf critical temperature Tcrit and thermal safety margins TSM, i.e., the difference between maximum Tcan and Tcrit) in three oak species in forests along a latitudinal gradient (Quercus petraea in Switzerland, Quercus ilex in France, and Quercus coccifera in Spain) throughout the growing season. Gas exchange and Ψ of all species were strongly reduced by increased air temperature (Tair) and soil drying, resulting in stomatal closure and inhibition of photosynthesis in Q. ilex and Q. coccifera when Tair surpassed 30°C and soil moisture dropped below 14%. Across all seasons, Tcan was mainly above Tair but increased strongly (up to 10°C > Tair) when Anet was null or negative. Although trees endured extreme Tair (up to 42°C), positive TSM were maintained during the growing season due to high Tcrit in all species (average Tcrit of 54.7°C) and possibly stomatal decoupling (i.e., Anet ≤0 while gs >0). Indeed, Q. ilex and Q. coccifera trees maintained low but positive gs (despite null Anet), decreasing Ψ passed embolism thresholds. This may have prevented Tcan from rising above Tcrit during extreme heat. Overall, our work highlighted that the mechanisms behind heat tolerance and leaf temperature regulation in oak trees include a combination of high evaporative cooling, large heat tolerance limits, and stomatal decoupling. These processes must be considered to accurately predict plant damages, survival, and mortality during extreme heatwaves.


Assuntos
Estômatos de Plantas , Quercus , Termotolerância , Quercus/fisiologia , Estômatos de Plantas/fisiologia , Espanha , Suíça , França , Folhas de Planta/fisiologia , Fotossíntese , Temperatura , Estações do Ano , Água , Temperatura Alta , Secas
14.
Physiol Plant ; 176(4): e14489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165150

RESUMO

Photosynthesis, understood as the photosynthetic carbon assimilation rate, is one of the key processes affected by drought stress. The effects can be via decreased CO2 diffusion and biochemical constraints. However, there is still no unified consensus about the contribution of each mechanism to the drought response. This research assessed the underlying limitations to photosynthesis in nine peanut genotypes (Arachis hypogaea L.) with different water strategies (water savers vs water spenders) under progressive drought. Water saver cultivars close the stomata earlier during drought, resulting in decreased transpiration and photosynthesis, which results in less water depletion in the soil, while water spenders maintain the stomata open during drought. In order to test the performance of these genotypes, growth, transpiration per plant, gas exchange measurements, chlorophyll fluorescence and A/Ci response curves were analyzed under drought and well-watered conditions. In general, drought first affected photosynthesis (at the leaf and canopy level) via stomatal closure and then by impacts on chlorophyll fluorescence in all genotypes, but at different intensity levels. The maximum rate of carboxylation and the maximum rate of electron transport, physiological characteristics related to biochemical constraints, were not affected during the onset of drought, but they were decreased at the end of the drought period, with the exception of the PI 493329 genotype that showed higher stomatal conductance due to a bigger root system. The findings presented here highlight the importance of genetic variation in the photosynthetic response of peanut to drought, which should be considered when breeding for future climates.


Assuntos
Arachis , Clorofila , Secas , Genótipo , Fotossíntese , Estômatos de Plantas , Água , Fotossíntese/fisiologia , Arachis/genética , Arachis/fisiologia , Arachis/metabolismo , Clorofila/metabolismo , Água/metabolismo , Água/fisiologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Transpiração Vegetal/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fluorescência
15.
Plant Physiol ; 196(2): 1579-1594, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39041424

RESUMO

Drought stress inhibits plant growth and agricultural production. Improving plant instantaneous water use efficiency (iWUE), which is strictly regulated by stomata, is an effective way to cope with drought stress. However, the mechanisms of iWUE regulation are poorly understood. Through genetic screening for suppressors of mpk12-4, an Arabidopsis (Arabidopsis thaliana) mutant with a major iWUE quantitative trait locus gene MITOGEN-ACTIVATED PROTEIN KINASE12 deleted, we identified HIGH LEAF TEMPERATURE1 (HT1). Genetic interaction and physiological analyses showed that MPK12 controls iWUE through multiple modules in a high CO2-induced stomatal closing pathway that regulate SLOW ANION CHANNEL-ASSOCIATED1 (SLAC1) activity. HT1 acts downstream of MPK12, whereas OPEN STOMATA1 (OST1) and GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) function downstream of HT1 by activating SLAC1 in iWUE. Photosynthetic-CO2 response curves and biomass analyses under different water-supply conditions showed that HT1 dysfunction improved iWUE and also increased plant growth capacity, and products of HT1 putative orthologs from Brassica (Brassica napus) and rice (Oryza sativa) exhibited functions similar to that of Arabidopsis HT1 in iWUE and the CO2-signaling pathway. Our study revealed the mechanism of MPK12-mediated iWUE regulation in Arabidopsis and provided insight into the internal relationship between iWUE and CO2 signaling in guard cells and a potential target for improving crop iWUE and drought tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estômatos de Plantas , Água , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Água/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Regulação da Expressão Gênica de Plantas , Dióxido de Carbono/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Secas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais , Brassica napus/genética , Brassica napus/fisiologia , Mutação/genética , Proteínas Quinases
16.
Plant Cell Environ ; 47(11): 4398-4415, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38995178

RESUMO

Phloretin has different glycosylation modes in plants. Phlorizin (phloretin 2'-O-glucoside) is one of the glycosylation products of phloretin, and accumulates abundantly in apple plants. However, it is still unclear whether phlorizin is more beneficial for apple plants compared with other glycosylation products of phloretin. We created transgenic apple plants with different glycosylation modes of phloretin. In transgenic plants, the accumulation of phlorizin was partly replaced by that of trilobatin (phloretin 4'-O-glucoside) or phloretin 3',5'-di-C-glycoside. Compared with wild type, transgenic plants with less phlorizin showed dwarf phenotype, larger stomatal size, higher stomatal density and less tolerance to drought stress. Transcriptome and phytohormones assay indicate that phlorizin might regulate stomatal development and behaviour via controlling auxin and abscisic acid signalling pathways as well as carbonic anhydrase expressions. Transgenic apple plants with less phlorizin also showed less resistance to spider mites. Apple plants may hydrolyse phlorizin to produce phloretin, but cannot hydrolyse trilobatin or phloretin 3',5'-di-C-glycoside. Compared with its glycosylation products, phloretin is more toxic to spider mites. These results suggest that the glycosylation of phloretin to produce phlorizin is the optimal glycosylation mode in apple plants, and plays an important role in apple resistance to stresses.


Assuntos
Malus , Floretina , Plantas Geneticamente Modificadas , Estresse Fisiológico , Malus/genética , Malus/metabolismo , Malus/efeitos dos fármacos , Malus/fisiologia , Floretina/farmacologia , Floretina/metabolismo , Glicosilação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Secas , Reguladores de Crescimento de Plantas/metabolismo , Animais , Florizina/farmacologia , Ácidos Indolacéticos/metabolismo
17.
Planta ; 260(3): 56, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039321

RESUMO

MAIN CONCLUSION: Stomatal traits in rice genotypes affect water use efficiency. Low-frequency small-size stomata correlate with whole plant efficiency, while low-frequency large-size stomata show intrinsic efficiency and responsiveness to vapour pressure deficit. Leaf surface and the patterning of the epidermal layer play a vital role in determining plant growth. While the surface helps in determining radiation interception, epidermal pattern of stomatal factors strongly regulate gas exchange and water use efficiency (WUE). This study focuses on identifying distinct stomatal traits among rice genotypes to comprehend their influence on WUE. Stomatal frequency ranged from 353 to 687 per mm2 and the size varied between 128.31 and 339.01 µm2 among 150 rice germplasm with significant variability in abaxial and adaxial surfaces. The cumulative water transpired and WUE determined at the outdoor phenomics platform, over the entire crop growth period as well as during specific hours of a 24 h-day did not correlate with stomatal frequency nor size. However, genotypes with low-frequency and large-size stomata recorded higher intrinsic water use efficiency (67.04 µmol CO2 mol-1 H2O) and showed a quicker response to varying vapour pressure deficit that diurnally ranged between 0.03 and 2.17 kPa. The study demonstrated the role of stomatal factors in determining physiological subcomponents of WUE both at single leaf and whole plant levels. Differential expression patterns of stomatal regulatory genes among the contrasting groups explained variations in the epidermal patterning. Increased expression of ERECTA, TMM and YODA genes appear to contribute to decreased stomatal frequency in low stomatal frequency genotypes. These findings underscore the significance of stomatal traits in breeding programs and strongly support the importance of these genes that govern variability in stomatal architecture in future crop improvement programs.


Assuntos
Genótipo , Oryza , Folhas de Planta , Estômatos de Plantas , Transpiração Vegetal , Água , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Água/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Transpiração Vegetal/fisiologia , Pressão de Vapor
19.
Plant Cell Environ ; 47(9): 3590-3604, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031544

RESUMO

The response of mesophyll conductance (gm) to CO2 plays a key role in photosynthesis and ecosystem carbon cycles under climate change. Despite numerous studies, there is still debate about how gm responds to short-term CO2 variations. Here we used multiple methods and looked at the relationship between stomatal conductance to CO2 (gsc) and gm to address this aspect. We measured chlorophyll fluorescence parameters and online carbon isotope discrimination (Δ) at different CO2 mole fractions in sunflower (Helianthus annuus L.), cowpea (Vigna unguiculata L.), and wheat (Triticum aestivum L.) leaves. The variable J and Δ based methods showed that gm decreased with an increase in CO2 mole fraction, and so did stomatal conductance. There were linear relationships between gm and gsc across CO2 mole fractions. gm obtained from A-Ci curve fitting method was higher than that from the variable J method and was not representative of gm under the growth CO2 concentration. gm could be estimated by empirical models analogous to the Ball-Berry model and the USO model for stomatal conductance. Our results suggest that gm and gsc respond in a coordinated manner to short-term variations in CO2, providing new insight into the role of gm in photosynthesis modelling.


Assuntos
Dióxido de Carbono , Helianthus , Células do Mesofilo , Estômatos de Plantas , Triticum , Dióxido de Carbono/metabolismo , Estômatos de Plantas/fisiologia , Células do Mesofilo/fisiologia , Células do Mesofilo/metabolismo , Triticum/fisiologia , Triticum/metabolismo , Helianthus/fisiologia , Helianthus/metabolismo , Isótopos de Carbono , Fotossíntese/fisiologia , Fabaceae/fisiologia , Clorofila/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo
20.
New Phytol ; 243(6): 2457-2469, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39021265

RESUMO

Characterizing physiological and anatomical changes that underlie rapid evolution following climatic perturbation can broaden our understanding of how climate change is affecting biodiversity. It can also provide evidence of cryptic adaptation despite stasis at higher levels of biological organization. Here, we compared evolutionary changes in populations of Mimulus cardinalis from historically different climates in the north and south of the species' range following an exceptional drought. We grew seeds produced from predrought ancestral plants alongside peak-drought descendants in a common glasshouse and exposed them to wet and dry conditions. Before the drought, northern ancestral populations expressed traits contributing to drought escape, while southern ancestral populations expressed drought avoidance. Following the drought, both regions evolved to reduce water loss and maintain photosynthesis in dry treatments (drought avoidance), but via different anatomical alterations in stomata, trichomes, and palisade mesophyll. Additionally, southern populations lost the ability to take advantage of wet conditions. These results reveal rapid evolution towards drought avoidance at an anatomical level following an exceptional drought, but suggest that differences in the mechanisms between regions incur different trade-offs. This sheds light on the importance of characterizing underlying mechanisms for downstream life-history and macromorphological traits.


Assuntos
Evolução Biológica , Secas , Fotossíntese , Folhas de Planta , Folhas de Planta/fisiologia , Folhas de Planta/anatomia & histologia , Mimulus/fisiologia , Mimulus/genética , Mimulus/anatomia & histologia , Água/fisiologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA