Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.195
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273630

RESUMO

Efforts towards an effective HIV-1 vaccine have remained mainly unsuccessful. There is increasing evidence for a potential role of HLA-C-restricted CD8+ T cell responses in HIV-1 control, including our recent report of HLA-C*03:02 among African children. However, there are no documented optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C*03:02; additionally, the structural influence of HLA-C*03:02 on epitope binding is undetermined. Immunoinformatics approaches provide a fast and inexpensive method to discover HLA-restricted epitopes. Here, we employed immunopeptidomics to identify HLA-C*03:02 CD8+ T cell epitopes. We identified a clade-specific Gag-derived GY9 (GTEELRSLY) HIV-1 p17 matrix epitope potentially restricted to HLA-C*03:02. Residues E62, T142, and E151 in the HLA-C*03:02 binding groove and positions p3, p6, and p9 on the GY9 epitope are crucial in shaping and stabilizing the epitope binding. Our findings support the growing evidence of the contribution of HLA-C molecules to HIV-1 control and provide a prospect for vaccine strategies.


Assuntos
Epitopos de Linfócito T , HIV-1 , Antígenos HLA-C , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Humanos , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Antígenos HLA-C/imunologia , Antígenos HLA-C/metabolismo , Antígenos HLA-C/genética , HIV-1/imunologia , HIV-1/genética , Linfócitos T Citotóxicos/imunologia , Sequência de Aminoácidos , Ligação Proteica , Infecções por HIV/imunologia , Infecções por HIV/virologia , Antígenos HIV
2.
Viruses ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39339884

RESUMO

A novel tick-borne orthonairovirus called the Yezo virus (YEZV), primarily transmitted by the Ixodes persulcatus tick, has been recently discovered and poses significant threats to human health. The YEZV is considered endemic in Japan and China. Clinical symptoms associated with this virus include thrombocytopenia, fatigue, headache, leukopenia, fever, depression, and neurological complications ranging from mild febrile illness to severe outcomes like meningitis and encephalitis. At present, there is no treatment or vaccine readily accessible for this pathogenic virus. Therefore, this research employed an immunoinformatics approach to pinpoint potential vaccine targets within the YEZV through an extensive examination of its structural proteins. Three structural proteins were chosen using specific criteria to pinpoint T-cell and B-cell epitopes, which were subsequently validated through interferon-gamma induction. Six overlapping epitopes for cytotoxic T-lymphocytes (CTL), helper T-lymphocytes (HTL), and linear B-lymphocytes (LBL) were selected to construct a multi-epitope vaccine, achieving a 92.29% coverage of the global population. These epitopes were then fused with the 50S ribosomal protein L7/L12 adjuvant to improve protection against international strains. The three-dimensional structure of the designed vaccine construct underwent an extensive evaluation through structural analysis. Following molecular docking studies, the YEZV vaccine construct emerged as a candidate for further investigation, showing the lowest binding energy (-78.7 kcal/mol) along with favorable physiochemical and immunological properties. Immune simulation and molecular dynamics studies demonstrated its stability and potential to induce a strong immune response within the host cells. This comprehensive analysis indicates that the designed vaccine construct could offer protection against the YEZV. It is crucial to conduct additional in vitro and in vivo experiments to verify its safety and effectiveness.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Vacinas Virais , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Animais , Vacinas Virais/imunologia , Vacinas Virais/química , Humanos , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/química , Camundongos , Linfócitos T Citotóxicos/imunologia , Simulação de Acoplamento Molecular , Imunoinformática
3.
Virulence ; 15(1): 2398171, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39258802

RESUMO

Orf virus (ORFV) is an acute contact, epitheliotropic, zoonotic, and double-stranded DNA virus that causes significant economic losses in the livestock industry. The objective of this study is to design an immunoinformatics-based multi-epitope subunit vaccine against ORFV. Various immunodominant cytotoxic T lymphocytes (CTL), helper T lymphocytes (HTL), and B-cell epitopes from the B2L, F1L, and 080 protein of ORFV were selected and linked by short connectors to construct a multi-epitope subunit vaccine. Immunogenicity was enhanced by adding an adjuvant ß-defensin to the N-terminal of the vaccine using the EAAAK linker. The vaccine exhibited a significant degree of antigenicity and solubility, without allergenicity or toxicity. The 3D formation of the vaccine was subsequently anticipated, improved, and verified. The optimized model exhibited a lower Z-score of -4.33, indicating higher quality. Molecular docking results demonstrated that the vaccine strongly binds to TLR2 and TLR4. Molecular dynamics results indicated that the docked vaccine-TLR complexes were stable. Immune simulation analyses further confirmed that the vaccine can induce a marked increase in IgG and IgM antibody titers, and elevated levels of IFN-γ and IL-2. Finally, the optimized DNA sequence of the vaccine was cloned into the vector pET28a (+) for high expression in the E.coli expression system. Overall, the designed multi-epitope subunit vaccine is highly stable and can induce robust humoral and cellular immunity, making it a promising vaccine candidate against ORFV.


Assuntos
Epitopos de Linfócito B , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Vírus do Orf , Vacinas de Subunidades Antigênicas , Vacinas Virais , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/química , Animais , Vírus do Orf/imunologia , Vírus do Orf/genética , Vacinas Virais/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Camundongos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/química , Ectima Contagioso/prevenção & controle , Ectima Contagioso/imunologia , Ectima Contagioso/virologia , Camundongos Endogâmicos BALB C , Feminino , Linfócitos T Citotóxicos/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
4.
Front Immunol ; 15: 1454394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221241

RESUMO

The increasing and ongoing issue of antibiotic resistance in bacteria is of huge concern globally, mainly to healthcare facilities. It is now crucial to develop a vaccine for therapeutic and preventive purposes against the bacterial species causing hospital-based infections. Among the many antibiotic- resistant bacterial pathogens, the Enterobacter cloacae complex (ECC) including six species, E. Colcae, E. absuriae, E. kobie, E. hormaechei, E. ludwigii, and E. nimipressuralis, are dangerous to public health and may worsen the situation. Vaccination plays a vital role in the prevention of infections and infectious diseases. This research highlighted the construction and design of a multi-epitope vaccine for the E. cloacae complex by retrieving their complete sequenced proteome. The retrieved proteome was assessed to opt for potential vaccine candidates using immunoinformatic tools. Both B and T-cell epitopes were predicted in order to create both humoral and cellular immunity and further scrutinized for antigenicity, allergenicity, water solubility, and toxicity analysis. The final potential epitopes were subjected to population coverage analysis. Major histocompatibility complex (MHC) class combined, and MHC Class I and II world population coverage was obtained as 99.74%, and 98.55% respectively while a combined 81.81% was covered. A multi-epitope peptide-based vaccine construct consisting of the adjuvant, epitopes, and linkers was subjected to the ProtParam tool to calculate its physiochemical properties. The total amino acids were 236, the molecular weight was 27.64kd, and the vaccine construct was stable with an instability index of 27.01. The Grand Average of Hydropathy (GRAVY) (hydrophilicity) value obtained was -0.659, being more negative and depicting the hydrophilic character. It was non-allergen antigenic with an antigenicity of 0.8913. The vaccine construct was further validated for binding efficacy with immune cell receptors MHC-I, MHC-II, and Toll-like receptor (TLR)-4. The molecular docking results depict that the designed vaccine has good binding potency with immune receptors crucial for antigen presentation and processing. Among the Vaccine-MHC-I, Vaccine-MHC-II, and Vaccine-TLR-4 complexes, the best-docked poses were identified based on their lowest binding energy scores of -886.8, -995.6, and -883.6, respectively. Overall, we observed that the designed vaccine construct can evoke a proper immune response and the construct could help experimental researchers in the formulation of a vaccine against the targeted pathogens.


Assuntos
Vacinas Bacterianas , Enterobacter cloacae , Epitopos de Linfócito B , Epitopos de Linfócito T , Enterobacter cloacae/imunologia , Humanos , Vacinas Bacterianas/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito B/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/prevenção & controle , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Desenvolvimento de Vacinas , Vacinologia/métodos , Modelos Moleculares
5.
J Mol Graph Model ; 132: 108848, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39182254

RESUMO

Staphylococcus aureus is a common bacterium that causes a variety of infections in humans. This microorganism produces several virulence factors, including hemolysins, which contribute to its disease-causing ability. The treatment of S. aureus infections typically involves the use of antibiotics. However, the emergence of antibiotic-resistant strains has become a major concern. Therefore, vaccination against S. aureus has gained attention as an alternative approach. Vaccination has the advantage of stimulating the immune system to produce specific antibodies that can neutralize bacteria and prevent infection. However, developing an effective vaccine against S. aureus has proven to be challenging. This study aimed to use in silico methods to design a multi-epitope vaccine against S. aureus infection based on hemolysin proteins. The designed vaccine contained four B-cell epitopes, four CTL epitopes, and four HTL epitopes, as well as the ribosomal protein L7/L12 and pan-HLA DR-binding epitope, included as adjuvants. Furthermore, the vaccine was non-allergenic and non-toxic with the potential to stimulate the TLR2-, TLR-4, and TLR-6 receptors. The predicted vaccine exhibited a high degree of antigenicity and stability, suggesting potential for further development as a viable vaccine candidate. The population coverage of the vaccine was 94.4 %, indicating potential widespread protection against S. aureus. Overall, these findings provide valuable insights into the design of an effective multi-epitope vaccine against S. aureus infection and pave the way for future experimental validations.


Assuntos
Epitopos de Linfócito B , Proteínas Hemolisinas , Staphylococcus aureus , Proteínas Hemolisinas/imunologia , Proteínas Hemolisinas/química , Staphylococcus aureus/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Humanos , Vacinas Antiestafilocócicas/imunologia , Vacinas Antiestafilocócicas/química , Biologia Computacional/métodos , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos/imunologia , Epitopos/química , Sequência de Aminoácidos
6.
J Agric Food Chem ; 72(35): 19494-19504, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39168117

RESUMO

Tropomyosin was reported as an important allergen in Crassostrea angulata and designated as Cra a 1. The localization of the T cell epitopes and the reduction of the immunoreactivity of Cra a 1 are still lacking. In this study, four T cell epitopes were identified by using wild-type Cra a 1 (wtCra a 1)-immunized mouse splenocytes cultured with synthetic peptides. The immunoreactivity was maintained after chemical denaturation treatment, indicating that the linear epitope is an immunodominant epitope of wtCra a 1. Furthermore, the hypoallergenic derivative (mCra a 1) was developed by the deletion of linear B cell epitopes and retention of T cell epitopes. mCra a 1 could stimulate CD4+T cell proliferation and upregulate interleukin-10 secretion. Overall, basophil activation by mCra a 1 was low, but its ability to induce T cell proliferation was retained, suggesting that mCra a 1 may serve as a viable candidate for treating oyster allergy.


Assuntos
Alérgenos , Crassostrea , Epitopos de Linfócito B , Epitopos de Linfócito T , Animais , Camundongos , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Alérgenos/imunologia , Alérgenos/química , Alérgenos/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Crassostrea/imunologia , Crassostrea/química , Crassostrea/genética , Tropomiosina/imunologia , Tropomiosina/genética , Tropomiosina/química , Camundongos Endogâmicos BALB C , Feminino , Humanos , Proliferação de Células/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Hipersensibilidade a Frutos do Mar/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos
7.
Braz J Microbiol ; 55(3): 2953-2968, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39060911

RESUMO

Canine parvovirus (CPV-2) is a highly contagious virus affecting dogs worldwide, posing a significant threat. The VP2 protein stands out as the predominant and highly immunogenic structural component of CPV-2. Soon after its emergence, CPV-2 was replaced by variants known as CPV-2a, 2b and 2c, marked by changes in amino acid residue 426 of VP2. Additional amino acid alterations have been identified within VP2, with certain modifications serving as signatures of emerging variants. In Brazil, CPV-2 outbreaks persist with diverse VP2 profiles. Vaccination is the main preventive measure against the virus. However, the emergence of substitutions presents challenges to conventional vaccine methods. Commercial vaccines are formulated with strains that usually do not match those currently circulating in the field. To address this, the study aimed to investigate CPV-2 variants in Brazil, predict epitopes, and design an in silico vaccine tailored to local variants employing reverse vaccinology. The methodology involved data collection, genetic sequence analysis, and amino acid comparison between field strains and vaccines, followed by the prediction of B and T cell epitope regions. The predicted epitopes were evaluated for antigenicity, allergenicity and toxicity. The final vaccine construct consisted of selected epitopes linked to an adjuvant and optimized for expression in Escherichia coli. Structural predictions confirmed the stability and antigenicity of the vaccine, while molecular docking demonstrated interaction with the canine toll-like receptor 4. Molecular dynamics simulations indicated a stable complex formation. In silico immune simulations demonstrated a progressive immune response post-vaccination, including increased antibody production and T-helper cell activity. The multi-epitope vaccine design targeted prevalent CPV-2 variants in Brazil and potentially other regions globally. However, experimental validation is essential to confirm our in silico findings.


Assuntos
Simulação por Computador , Doenças do Cão , Infecções por Parvoviridae , Parvovirus Canino , Vacinas Virais , Parvovirus Canino/imunologia , Parvovirus Canino/genética , Parvovirus Canino/química , Animais , Cães , Doenças do Cão/prevenção & controle , Doenças do Cão/imunologia , Doenças do Cão/virologia , Infecções por Parvoviridae/prevenção & controle , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/imunologia , Brasil , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/química , Vacinologia/métodos , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Epitopos/imunologia , Epitopos/genética , Epitopos/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química
8.
Biologicals ; 87: 101782, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003966

RESUMO

Human cytomegalovirus (HCMV) is accountable for high morbidity in neonates and immunosuppressed individuals. Due to the high genetic variability of HCMV, current prophylactic measures are insufficient. In this study, we employed a pan-genome and reverse vaccinology approach to screen the target for efficient vaccine candidates. Four proteins, envelope glycoprotein M, UL41A, US23, and US28, were shortlisted based on cellular localization, high solubility, antigenicity, and immunogenicity. A total of 29 B-cell and 44 T-cell highly immunogenic and antigenic epitopes with high global population coverage were finalized using immunoinformatics tools and algorithms. Further, the epitopes that were overlapping among the finalized B-cell and T-cell epitopes were linked with suitable linkers to form various combinations of multi-epitopic vaccine constructs. Among 16 vaccine constructs, Vc12 was selected based on physicochemical and structural properties. The docking and molecular simulations of VC12 were performed, which showed its high binding affinity (-23.35 kcal/mol) towards TLR4 due to intermolecular hydrogen bonds, salt bridges, and hydrophobic interactions, and there were only minimal fluctuations. Furthermore, Vc12 eliciting a good response was checked for its expression in Escherichia coli through in silico cloning and codon optimization, suggesting it to be a potent vaccine candidate.


Assuntos
Citomegalovirus , Epitopos de Linfócito T , Humanos , Citomegalovirus/imunologia , Citomegalovirus/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , Vacinas contra Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/química , Vacinologia/métodos , Genoma Viral , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/imunologia , Simulação de Acoplamento Molecular
9.
Food Chem ; 459: 140315, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38986203

RESUMO

Casein, the major allergen in cow's milk, presents a significant challenge in providing nutritional support for children with allergies. To address this issue, we investigated a composite enzyme, comprising papain and chymotrypsin, to reduce the allergenicity of casein. Enzymatic hydrolysis induced substantial structural changes in casein, diminishing its affinity for specific IgE and IgG antibodies. Additionally, in a BALB/c mouse model, casein hydrolysate alleviated allergic symptoms, evidenced by lower serum IgE and IgG levels, reduced plasma histamine, and decreased Th2 cytokine release during cell co-culture. Peptidomic analysis revealed a 52.38% and 60% reduction in peptides containing IgE epitopes in casein hydrolyzed by the composite enzyme compared to papain and chymotrypsin, respectively, along with a notable absence of previously reported T cell epitopes. These results demonstrate the potential of enzyme combinations to enhance the efficiency of epitope destruction in allergenic proteins, providing valuable insights into the development of hypoallergenic dairy products.


Assuntos
Alérgenos , Caseínas , Quimotripsina , Hipersensibilidade a Leite , Papaína , Animais , Bovinos , Feminino , Humanos , Camundongos , Alérgenos/imunologia , Alérgenos/química , Caseínas/imunologia , Caseínas/química , Quimotripsina/química , Quimotripsina/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Imunoglobulina E/imunologia , Camundongos Endogâmicos BALB C , Leite/química , Leite/imunologia , Hipersensibilidade a Leite/imunologia , Hipersensibilidade a Leite/prevenção & controle , Papaína/imunologia , Papaína/química
10.
Bioinformatics ; 40(8)2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39052940

RESUMO

MOTIVATION: Prediction of T-cell receptor (TCR)-epitope interactions is important for many applications in biomedical research, such as cancer immunotherapy and vaccine design. The prediction of TCR-epitope interactions remains challenging especially for novel epitopes, due to the scarcity of available data. RESULTS: We propose TSpred, a new deep learning approach for the pan-specific prediction of TCR binding specificity based on paired chain TCR data. We develop a robust model that generalizes well to unseen epitopes by combining the predictive power of CNN and the attention mechanism. In particular, we design a reciprocal attention mechanism which focuses on extracting the patterns underlying TCR-epitope interactions. Upon a comprehensive evaluation of our model, we find that TSpred achieves state-of-the-art performances in both seen and unseen epitope specificity prediction tasks. Also, compared to other predictors, TSpred is more robust to bias related to peptide imbalance in the dataset. In addition, the reciprocal attention component of our model allows for model interpretability by capturing structurally important binding regions. Results indicate that TSpred is a robust and reliable method for the task of TCR-epitope binding prediction. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/ha01994/TSpred.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/metabolismo , Humanos , Aprendizado Profundo , Biologia Computacional/métodos , Software , Ligação Proteica
11.
Viruses ; 16(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066193

RESUMO

Puumala orthohantavirus (PUUV) is an emerging zoonotic virus endemic to Europe and Russia that causes nephropathia epidemica, a mild form of hemorrhagic fever with renal syndrome (HFRS). There are limited options for treatment and diagnosis of orthohantavirus infection, making the search for potential immunogenic candidates crucial. In the present work, various bioinformatics tools were employed to design conserved immunogenic peptides containing multiple epitopes of PUUV nucleocapsid protein. Eleven conserved peptides (90% conservancy) of the PUUV nucleocapsid protein were identified. Three conserved peptides containing multiple T and B cell epitopes were selected using a consensus epitope prediction algorithm. Molecular docking using the HPEP dock server demonstrated strong binding interactions between the epitopes and HLA molecules (ten alleles for each class I and II HLA). Moreover, an analysis of population coverage using the IEDB database revealed that the identified peptides have over 90% average population coverage across six continents. Molecular docking and simulation analysis reveal a stable interaction with peptide constructs of chosen immunogenic peptides and Toll-like receptor-4. These computational analyses demonstrate selected peptides' immunogenic potential, which needs to be validated in different experimental systems.


Assuntos
Simulação de Acoplamento Molecular , Proteínas do Nucleocapsídeo , Peptídeos , Virus Puumala , Virus Puumala/imunologia , Virus Puumala/genética , Peptídeos/imunologia , Peptídeos/química , Humanos , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Febre Hemorrágica com Síndrome Renal/imunologia , Febre Hemorrágica com Síndrome Renal/virologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/química , Biologia Computacional , Sequência Conservada , Sequência de Aminoácidos , Ligação Proteica
12.
Nat Comput Sci ; 4(7): 510-521, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987378

RESUMO

T cell receptor (TCR) recognition of foreign peptides presented by major histocompatibility complex protein is a major event in triggering the adaptive immune response to pathogens or cancer. The prediction of TCR-peptide interactions has great importance for therapy of cancer as well as infectious and autoimmune diseases but remains a major challenge, particularly for novel (unseen) peptide epitopes. Here we present TCRen, a structure-based method for ranking candidate unseen epitopes for a given TCR. The first stage of the TCRen pipeline is modeling of the TCR-peptide-major histocompatibility complex structure. Then a TCR-peptide residue contact map is extracted from this structure and used to rank all candidate epitopes on the basis of an interaction score with the target TCR. Scoring is performed using an energy potential derived from the statistics of TCR-peptide contact preferences in existing crystal structures. We show that TCRen has high performance in discriminating cognate versus unrelated peptides and can facilitate the identification of cancer neoepitopes recognized by tumor-infiltrating lymphocytes.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Humanos , Peptídeos/imunologia , Peptídeos/química , Epitopos/imunologia , Epitopos/química , Modelos Moleculares , Neoplasias/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Complexo Principal de Histocompatibilidade/imunologia , Conformação Proteica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
13.
Front Immunol ; 15: 1426496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050858

RESUMO

The Zika virus (ZIKV) is an emerging virus associated with the Flaviviridae family that mainly causes infection in pregnant women and leads to several abnormalities during pregnancy. This virus has unique properties that may lead to pathological diseases. As the virus has the ability to evade immune response, a crucial effort is required to deal with ZIKV. Vaccines are a safe means to control different pathogenic infectious diseases. In the current research, a multi-epitope-based vaccination against ZIKV is being designed using in silico methods. For the epitope prediction and prioritization phase, ZIKV polyprotein (YP_002790881.1) and flavivirus polyprotein (>YP_009428568.1) were targeted. The predicted B-cell epitopes were used for MHC-I and MHC-II epitope prediction. Afterward, several immunoinformatics filters were applied and nine (REDLWCGSL, MQDLWLLRR, YKKSGITEV, TYTDRRWCF, RDAFPDSNS, KPSLGLINR, ELIGRARVS, AITQGKREE, and EARRSRRAV) epitopes were found to be probably antigenic in nature, non-allergenic, non-toxic, and water soluble without any toxins. Selected epitopes were joined using a particular GPGPG linker to create the base vaccination for epitopes, and an extra EAAAK linker was used to link the adjuvant. A total of 312 amino acids with a molecular weight (MW) of 31.62762 and an instability value of 34.06 were computed in the physicochemical characteristic analysis, indicating that the vaccine design is stable. The molecular docking analysis predicted a binding energy of -329.46 (kcal/mol) for TLR-3 and -358.54 (kcal/mol) for TLR-2. Moreover, the molecular dynamics simulation analysis predicted that the vaccine and receptor molecules have stable binding interactions in a dynamic environment. The C-immune simulation analysis predicted that the vaccine has the ability to generate both humoral and cellular immune responses. Based on the design, the vaccine construct has the best efficacy to evoke immune response in theory, but experimental analysis is required to validate the in silico base approach and ensure its safety.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Vacinas Virais , Infecção por Zika virus , Zika virus , Zika virus/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/imunologia , Humanos , Epitopos de Linfócito B/imunologia , Biologia Computacional/métodos , Desenvolvimento de Vacinas , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Modelos Moleculares , Imunoinformática
14.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39007599

RESUMO

The interaction between T-cell receptors (TCRs) and peptides (epitopes) presented by major histocompatibility complex molecules (MHC) is fundamental to the immune response. Accurate prediction of TCR-epitope interactions is crucial for advancing the understanding of various diseases and their prevention and treatment. Existing methods primarily rely on sequence-based approaches, overlooking the inherent topology structure of TCR-epitope interaction networks. In this study, we present $GTE$, a novel heterogeneous Graph neural network model based on inductive learning to capture the topological structure between TCRs and Epitopes. Furthermore, we address the challenge of constructing negative samples within the graph by proposing a dynamic edge update strategy, enhancing model learning with the nonbinding TCR-epitope pairs. Additionally, to overcome data imbalance, we adapt the Deep AUC Maximization strategy to the graph domain. Extensive experiments are conducted on four public datasets to demonstrate the superiority of exploring underlying topological structures in predicting TCR-epitope interactions, illustrating the benefits of delving into complex molecular networks. The implementation code and data are available at https://github.com/uta-smile/GTE.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Humanos , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Redes Neurais de Computação , Biologia Computacional/métodos , Ligação Proteica , Epitopos/química , Epitopos/imunologia , Algoritmos , Software
15.
Virol J ; 21(1): 160, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039549

RESUMO

Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.


Assuntos
Antígenos Virais , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Dinâmica Molecular , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Vacinas de Subunidades Antigênicas , Animais , Suínos , Rotavirus/imunologia , Rotavirus/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/química , Vacinas contra Rotavirus/genética , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/química , Antígenos Virais/imunologia , Antígenos Virais/genética , Antígenos Virais/química , Simulação de Acoplamento Molecular , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Desenvolvimento de Vacinas , Imunogenicidade da Vacina
16.
Front Immunol ; 15: 1413893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915396

RESUMO

Introduction: Trypanosoma cruzi is a protozoan parasite that causes the tropical ailment known as Chagas disease, which has its origins in South America. Globally, it has a major impact on health and is transported by insect vector that serves as a parasite. Given the scarcity of vaccines and the limited treatment choices, we conducted a comprehensive investigation of core proteomics to explore a potential reverse vaccine candidate with high antigenicity. Methods: To identify the immunodominant epitopes, T. cruzi core proteomics was initially explored. Consequently, the vaccine sequence was engineered to possess characteristics of non-allergenicity, antigenicity, immunogenicity, and enhanced solubility. After modeling the tertiary structure of the human TLR4 receptor, the binding affinities were assessed employing molecular docking and molecular dynamics simulations (MDS). Results: Docking of the final vaccine design with TLR4 receptors revealed substantial hydrogen bond interactions. A server-based methodology for immunological simulation was developed to forecast the effectiveness against antibodies (IgM + IgG) and interferons (IFN-g). The MDS analysis revealed notable levels of structural compactness and binding stability with average RMSD of 5.03 Aring;, beta-factor 1.09e+5 Å, Rg is 44.7 Aring; and RMSF of 49.50 Aring;. This is followed by binding free energies calculation. The system stability was compromised by the complexes, as evidenced by their corresponding Gibbs free energies of -54.6 kcal/mol. Discussion: Subtractive proteomics approach was applied to determine the antigenic regions of the T cruzi. Our study utilized computational techniques to identify B- and T-cell epitopes in the T. cruzi core proteome. In current study the developed vaccine candidate exhibits immunodominant features. Our findings suggest that formulating a vaccine targeting the causative agent of Chagas disease should be the initial step in its development.


Assuntos
Doença de Chagas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteoma , Vacinas Protozoárias , Receptor 4 Toll-Like , Trypanosoma cruzi , Trypanosoma cruzi/imunologia , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Humanos , Proteoma/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/química , Vacinas Protozoárias/imunologia , Animais , Epitopos Imunodominantes/imunologia , Proteômica/métodos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/química , Anticorpos Antiprotozoários/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/química , Desenvolvimento de Vacinas , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química
17.
Toxins (Basel) ; 16(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38922165

RESUMO

Extensively drug-resistant Pseudomonas aeruginosa infections are emerging as a significant threat associated with adverse patient outcomes. Due to this organism's inherent properties of developing antibiotic resistance, we sought to investigate alternative strategies such as identifying "high value" antigens for immunotherapy-based purposes. Through extensive database mining, we discovered that numerous Gram-negative bacterial (GNB) genomes, many of which are known multidrug-resistant (MDR) pathogens, including P. aeruginosa, horizontally acquired the evolutionarily conserved gene encoding Zonula occludens toxin (Zot) with a substantial degree of homology. The toxin's genomic footprint among so many different GNB stresses its evolutionary importance. By employing in silico techniques such as proteomic-based phylogenetic tracing, in conjunction with comparative structural modeling, we discovered a highly conserved intermembrane associated stretch of 70 amino acids shared among all the GNB strains analyzed. The characterization of our newly identified antigen reveals it to be a "high value" vaccine candidate specific for P. aeruginosa. This newly identified antigen harbors multiple non-overlapping B- and T-cell epitopes exhibiting very high binding affinities and can adopt identical tertiary structures among the least genetically homologous P. aeruginosa strains. Taken together, using proteomic-driven reverse vaccinology techniques, we identified multiple "high value" vaccine candidates capable of eliciting a polarized immune response against all the P. aeruginosa genetic variants tested.


Assuntos
Filogenia , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Humanos , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , Vacinas contra Pseudomonas/imunologia , Vacinas contra Pseudomonas/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética
18.
Comput Biol Med ; 178: 108738, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870724

RESUMO

Neisseria meningitidis, commonly known as the meningococcus, leads to substantial illness and death among children and young adults globally, revealing as either epidemic or sporadic meningitis and/or septicemia. In this study, we have designed a novel peptide-based chimeric vaccine candidate against the N. meningitidis strain 331,401 serogroup X. Through rigorous analysis of subtractive genomics, two essential cytoplasmic proteins, namely UPI000012E8E0(UDP-3-O-acyl-GlcNAc deacetylase) and UPI0000ECF4A9(UDP-N-acetylglucosamine acyltransferase) emerged as potential drug targets. Additionally, using reverse vaccinology, the outer membrane protein UPI0001F4D537 (Membrane fusion protein MtrC) identified by subcellular localization and recognized for its known indispensable role in bacterial survival was identified as a novel chimeric vaccine target. Following a careful comparison of MHC-I, MHC-II, T-cell, and B-cell epitopes, three epitopes derived from UPI0001F4D537 were linked with three types of linkers-GGGS, EAAAK, and the essential PADRE-for vaccine construction. This resulted in eight distinct vaccine models (V1-V8). Among them V1 model was selected as the final vaccine construct. It exhibits exceptional immunogenicity, safety, and enhanced antigenicity, with 97.7 % of its residues in the Ramachandran plot's most favored region. Subsequently, the vaccine structure was docked with the TLR4/MD2 complex and six different HLA allele receptors using the HADDOCK server. The docking resulted in the lowest HADDOCK score of 39.3 ± 9.0 for TLR/MD2. Immune stimulation showed a strong immune response, including antibodies creation and the activation of B-cells, T Cytotoxic cells, T Helper cells, Natural Killer cells, and interleukins. Furthermore, the vaccine construct was successfully expressed in the Escherichia coli system by reverse transcription, optimization, and ligation in the pET-28a (+) vector for the expression study. The current study proposes V1 construct has the potential to elicit both cellular and humoral responses, crucial for the developing an epitope-based vaccine against N. meningitidis strain 331,401 serogroup X.


Assuntos
Vacinas Meningocócicas , Neisseria meningitidis , Neisseria meningitidis/imunologia , Neisseria meningitidis/genética , Humanos , Vacinas Meningocócicas/imunologia , Vacinologia/métodos , Genômica , Simulação por Computador , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética
19.
PLoS One ; 19(5): e0300778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758816

RESUMO

Mpox (formerly known as monkeypox) virus and some related poxviruses including smallpox virus pose a significant threat to public health, and effective prevention and treatment strategies are needed. This study utilized a reverse vaccinology approach to retrieve conserved epitopes for monkeypox virus and construct a vaccine that could provide cross-protection against related viruses with similar antigenic properties. The selected virulent proteins of monkeypox virus, MPXVgp165, and Virion core protein P4a, were subjected to epitope mapping for vaccine construction. Two vaccines were constructed using selected T cell epitopes and B cell epitopes with PADRE and human beta-defensins adjuvants conjugated in the vaccine sequence. Both constructs were found to be highly antigenic, non-allergenic, nontoxic, and soluble, suggesting their potential to generate an adequate immune response and be safe for humans. Vaccine construct 1 was selected for molecular dynamic simulation studies. The simulation studies revealed that the TLR8-vaccine complex was more stable than the TLR3-vaccine complex. The lower RMSD and RMSF values of the TLR8 bound vaccine compared to the TLR3 bound vaccine suggested better stability and consistency of hydrogen bonds. The Rg values of the vaccine chain bound to TLR8 indicated overall stability, whereas the vaccine chain bound to TLR3 showed deviations throughout the simulation. These results suggest that the constructed vaccine could be a potential preventive measure against monkeypox and related viruses however, further experimental validation is required to confirm these findings.


Assuntos
Simulação de Dinâmica Molecular , Monkeypox virus , Humanos , Monkeypox virus/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Simulação por Computador , Poxviridae/imunologia , Vacinas Virais/imunologia , Mapeamento de Epitopos , Mpox/prevenção & controle , Mpox/imunologia , Animais , Receptor 8 Toll-Like/imunologia
20.
Int J Biol Macromol ; 270(Pt 1): 132105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710251

RESUMO

In this study, a methodical workflow using subtractive proteomics, vaccine designing, molecular simulation, and agent-based modeling approaches were used to annotate the whole proteome of Burkholderia pseudomallei (strain K96243) for vaccine designing. Among the total 5717 proteins in the whole proteome, 505 were observed to be essential for the pathogen's survival and pathogenesis predicted by the Database of Essential Genes. Among these, 23 vaccine targets were identified, of which fimbrial assembly chaperone (Q63UH5), Outer membrane protein (Q63UH1), and Hemolysin-like protein (Q63UE4) were selected for the subsequent analysis based on the systematic approaches. Using immunoinformatic approaches CTL (cytotoxic T lymphocytes), HTL (helper T lymphocytes), IFN-positive, and B cell epitopes were predicted for these targets. A total of 9 CTL epitopes were added using the GSS linker, 6 HTL epitopes using the GPGPG linker, and 6 B cell epitopes using the KK linker. An adjuvant was added for enhanced antigenicity, an HIV-TAT peptide for improved delivery, and a PADRE sequence was added to form a 466 amino acids long vaccine construct. The construct was classified as non-allergenic, highly antigenic, and experimentally feasible. Molecular docking results validated the robust interaction of MEVC with immune receptors such as TLR2/4. Furthermore, molecular simulation revealed stable dynamics and compact nature of the complexes. The binding free energy results further validated the robust binding. In silico cloning, results revealed GC contents of 50.73 % and a CIA value of 0.978 which shows proper downstream processing. Immune simulation results reported that after the three injections of the vaccine a robust secondary immune response, improved antigen clearance, and effective immune memory generation were observed highlighting its potential for effective and sustained immunity. Future directions should encompass experimental validations, animal model studies, and clinical trials to substantiate the vaccine's efficacy, safety, and immunogenicity.


Assuntos
Vacinas Bacterianas , Burkholderia pseudomallei , Epitopos de Linfócito B , Epitopos de Linfócito T , Proteômica , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Proteômica/métodos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Simulação de Acoplamento Molecular , Humanos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Melioidose/prevenção & controle , Melioidose/imunologia , Proteoma , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA