Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 203(Pt 3): 962-972, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28728971

RESUMO

The selection of the working fluid for Organic Rankine Cycles has traditionally been addressed from systematic heuristic methods, which perform a characterization and prior selection considering mainly one objective, thus avoiding a selection considering simultaneously the objectives related to sustainability and safety. The objective of this work is to propose a methodology for the optimal selection of the working fluid for Organic Rankine Cycles. The model is presented as a multi-objective approach, which simultaneously considers the economic, environmental and safety aspects. The economic objective function considers the profit obtained by selling the energy produced. Safety was evaluated in terms of individual risk for each of the components of the Organic Rankine Cycles and it was formulated as a function of the operating conditions and hazardous properties of each working fluid. The environmental function is based on carbon dioxide emissions, considering carbon dioxide mitigation, emission due to the use of cooling water as well emissions due material release. The methodology was applied to the case of geothermal facilities to select the optimal working fluid although it can be extended to waste heat recovery. The results show that the hydrocarbons represent better solutions, thus among a list of 24 working fluids, toluene is selected as the best fluid.


Assuntos
Dióxido de Carbono/química , Energia Geotérmica/economia , Meio Ambiente
2.
PLoS One ; 12(3): e0173820, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28329023

RESUMO

Power systems for South and Central America based on 100% renewable energy (RE) in the year 2030 were calculated for the first time using an hourly resolved energy model. The region was subdivided into 15 sub-regions. Four different scenarios were considered: three according to different high voltage direct current (HVDC) transmission grid development levels (region, country, area-wide) and one integrated scenario that considers water desalination and industrial gas demand supplied by synthetic natural gas via power-to-gas (PtG). RE is not only able to cover 1813 TWh of estimated electricity demand of the area in 2030 but also able to generate the electricity needed to fulfil 3.9 billion m3 of water desalination and 640 TWhLHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar and wind electricity storage, diminishing the role of storage technologies. The results for total levelized cost of electricity (LCOE) are decreased from 62 €/MWh for a highly decentralized to 56 €/MWh for a highly centralized grid scenario (currency value of the year 2015). For the integrated scenario, the levelized cost of gas (LCOG) and the levelized cost of water (LCOW) are 95 €/MWhLHV and 0.91 €/m3, respectively. A reduction of 8% in total cost and 5% in electricity generation was achieved when integrating desalination and power-to-gas into the system.


Assuntos
Energia Renovável , Biomassa , América Central , Custos e Análise de Custo , Fontes de Energia Elétrica/economia , Energia Geotérmica/economia , Modelos Teóricos , Gás Natural/economia , Centrais Elétricas/economia , Energia Renovável/economia , Energia Solar/economia , América do Sul , Movimentos da Água , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA