Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mech Ageing Dev ; 197: 111501, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34000259

RESUMO

Immunosenescence are alterations on immune system that occurs throughout an individual life. The main characteristic of this process is replicative senescence, evaluated by telomere shortening. Several factors implicate on telomere shortening, such as smoking. In this study, we evaluated the influence of smoking and Chronic Obstructive Pulmonary Disease (COPD) on cytokines, telomere length and telomerase activity. Blood samples were collected from subjects aged over 60 years old: Healthy (never smokers), Smokers (smoking for over 30 years) and COPDs (ex-smokers for ≥15 years). A young group was included as control. PBMCs were cultured for assessment of telomerase activity using RT-PCR, and cytokines secretion flow cytometry. CD4+ and CD8+ purified lymphocytes were used to assess telomere length using FlowFISH. We observed that COPD patients have accelerated telomere shortening. Paradoxically, smokers without lung damage showed preserved telomere length, suggesting that tobacco smoking may affect regulatory mechanisms, such as telomerase. Telomerase activity showed diminished activity in COPDs, while Smokers showed increased activity compared to COPDs and Healthy groups. Extracellular environment reflected this unbalance, indicated by an anti-inflammatory profile in Smokers, while COPDs showed an inflammatory prone profile. Further studies focusing on telomeric maintenance may unveil mechanisms that are associated with cancer under long-term smoking.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunossenescência , Doença Pulmonar Obstrutiva Crônica/imunologia , Fumar/imunologia , Telomerase/imunologia , Encurtamento do Telômero/imunologia , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fumar/efeitos adversos
2.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008850

RESUMO

Telomeres are localized at the end of chromosomes to provide genome stability; however, the telomere length tends to be shortened with each cell division inducing a progressive telomere shortening (TS). In addition to age, other factors, such as exposure to pollutants, diet, stress, and disruptions in the shelterin protein complex or genes associated with telomerase induce TS. This phenomenon favors cellular senescence and genotoxic stress, which increases the risk of the development and progression of lung diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, SARS-CoV-2 infection, and lung cancer. In an infectious environment, immune cells that exhibit TS are associated with severe lymphopenia and death, whereas in a noninfectious context, naïve T cells that exhibit TS are related to cancer progression and enhanced inflammatory processes. In this review, we discuss how TS modifies the function of the immune system cells, making them inefficient in maintaining homeostasis in the lung. Finally, we discuss the advances in drug and gene therapy for lung diseases where TS could be used as a target for future treatments.


Assuntos
Pneumopatias/genética , Pneumopatias/imunologia , Encurtamento do Telômero/imunologia , Animais , COVID-19/genética , COVID-19/imunologia , Senescência Celular/genética , Terapia Genética/métodos , Humanos , Imunoterapia/métodos , Pneumopatias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA