Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISME J ; 9(2): 485-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25303712

RESUMO

Photosynthetic microbial mats are complex, stratified ecosystems in which high rates of primary production create a demand for nitrogen, met partially by N2 fixation. Dinitrogenase reductase (nifH) genes and transcripts from Cyanobacteria and heterotrophic bacteria (for example, Deltaproteobacteria) were detected in these mats, yet their contribution to N2 fixation is poorly understood. We used a combined approach of manipulation experiments with inhibitors, nifH sequencing and single-cell isotope analysis to investigate the active diazotrophic community in intertidal microbial mats at Laguna Ojo de Liebre near Guerrero Negro, Mexico. Acetylene reduction assays with specific metabolic inhibitors suggested that both sulfate reducers and members of the Cyanobacteria contributed to N2 fixation, whereas (15)N2 tracer experiments at the bulk level only supported a contribution of Cyanobacteria. Cyanobacterial and nifH Cluster III (including deltaproteobacterial sulfate reducers) sequences dominated the nifH gene pool, whereas the nifH transcript pool was dominated by sequences related to Lyngbya spp. Single-cell isotope analysis of (15)N2-incubated mat samples via high-resolution secondary ion mass spectrometry (NanoSIMS) revealed that Cyanobacteria were enriched in (15)N, with the highest enrichment being detected in Lyngbya spp. filaments (on average 4.4 at% (15)N), whereas the Deltaproteobacteria (identified by CARD-FISH) were not significantly enriched. We investigated the potential dilution effect from CARD-FISH on the isotopic composition and concluded that the dilution bias was not substantial enough to influence our conclusions. Our combined data provide evidence that members of the Cyanobacteria, especially Lyngbya spp., actively contributed to N2 fixation in the intertidal mats, whereas support for significant N2 fixation activity of the targeted deltaproteobacterial sulfate reducers could not be found.


Assuntos
Bactérias/metabolismo , Cianobactérias/metabolismo , Fixação de Nitrogênio , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Dinitrogenase Redutase/genética , Ecossistema , México , Fixação de Nitrogênio/genética , Análise de Célula Única
2.
J Bacteriol ; 178(10): 2948-53, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8631686

RESUMO

Although ADP-ribosylation of dinitrogenase reductase plays a significant role in the regulation of nitrogenase activity in Azospirillum brasilense, it is not the only mechanism of that regulation. The replacement of an arginine residue at position 101 in the dinitrogenase reductase eliminated this ADP-ribosylation and revealed another regulatory system. While the constructed mutants had a low nitrogenase activity, NH4+ still partially inhibited their nitrogenase activity, independent of the dinitrogenase reductase ADP-ribosyltransferase/dinitrogenase reductase activating glycohydrolase (DRAT/DRAG) system. These mutated dinitrogenase reductases also were expressed in a Rhodospirillum rubrum strain that lacked its endogenous dinitrogenase reductase, and they supported high nitrogenase activity. These strains neither lost nitrogenase activity nor modified dinitrogenase reductase in response to darkness and NH4+, suggesting that the ADP-ribosylation of dinitrogenase reductase is probably the only mechanism for posttranslational regulation of nitrogenase activity in R. rubrum under these conditions.


Assuntos
Azospirillum brasilense/genética , Regulação Bacteriana da Expressão Gênica , N-Glicosil Hidrolases , Nitrogenase/biossíntese , Processamento de Proteína Pós-Traducional , Compostos de Amônio Quaternário/farmacologia , ADP Ribose Transferases , Azospirillum brasilense/efeitos dos fármacos , Azospirillum brasilense/enzimologia , Dinitrogenase Redutase/genética , Regulação Enzimológica da Expressão Gênica , Genes Bacterianos , Glicosídeo Hidrolases , Mutagênese Sítio-Dirigida , Fixação de Nitrogênio/genética , Rhodospirillum rubrum/enzimologia , Rhodospirillum rubrum/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA