Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.371
Filtrar
1.
J Ethnopharmacol ; 336: 118684, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127117

RESUMO

ETHNOPHARMACOLOGICAL PREVALENCE: Hyperglycemia in diabetes increases the generation of advanced glycation end products (AGEs) through non-enzymatic reactions. The interaction between AGEs and their receptors (RAGE) leads to oxidative and inflammatory stress, which plays a pivotal role in developing diabetic nephropathy. Syzygium cumini (SC) L. (DC.) homeopathic preparations viz. 200C, 30C, and mother tincture [MT] are used to treat diabetes. This study aimed to elucidate the regulatory effects of SC preparations (200C, 30C, and MT) on the nuclear factor erythroid 2-related factor 2 (Nrf2) - nuclear factor-κB (NF-κB) pathways and mitochondrial dysfunction in mitigating diabetic nephropathy (DN). MATERIALS AND METHODS: Streptozotocin-induced diabetic rats were treated with SC preparations (200C, 30C, MT; 1:20 dilution in distilled water; 600 µL/kg body weight) and metformin (45 mg/kg body weight) twice daily for 40 days. DN was evaluated through biochemical parameters and histological examination. Renal tissue lysates were analyzed for glycation markers. Protein and gene levels of Nrf2, NF-κB, and mitochondrial dysfunctional signaling were determined via western blotting and RT-qPCR. An immunohistochemical analysis of the kidneys was performed. In vitro, human serum albumin (HSA - 10 mg/ml) was glycated with methylglyoxal (MGO - 55 mM) in the presence of SC preparations (200C, 30C, MT) for eight days. Glycated samples (400 µg/mL) were incubated with renal cells (HEK-293) for 24 h. Further reactive oxygen species production, Nrf2 nuclear translocation, and protein or gene expression of Nrf2 and apoptosis markers were analyzed by western blotting, RT-qPCR, and flow cytometry. Molecular docking of gallic and ellagic acid with the HSA-MGO complex was performed. RESULT: In vivo experiments using streptozotocin-induced diabetic rats treated with SC preparations exhibited improved biochemical parameters, preserved kidney function, and reduced glycation adduct formation in a dose-dependent manner. Furthermore, SC preparations downregulated inflammatory mediators such as RAGE, NF-κB, vascular endothelial growth factor (VEGF), and Tumor necrosis factor α (TNF-α) while upregulating the Nrf2-dependent antioxidant and detoxification pathways. They downregulated B-cell lymphoma 2 (Bcl-2) associated X-protein (BAX), C/EBP homologous protein (CHOP), Dynamin-related protein 1 (DRP1), and upregulated BCL 2 gene expression. Notably, SC preparations facilitated nuclear translocation of Nrf2, leading to the upregulation of antioxidant enzymes and the downregulation of oxidative stress markers. Molecular docking studies revealed favorable interactions between gallic (-5.26 kcal/mol) and ellagic acid (-4.71 kcal/mol) with the HSA-MGO complex. CONCLUSION: SC preparations mitigate renal cell apoptosis and mitochondrial dysfunction through Nrf2-dependent mechanisms.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Fator 2 Relacionado a NF-E2 , Syzygium , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Syzygium/química , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células HEK293 , Estresse Oxidativo/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Produtos Finais de Glicação Avançada/metabolismo , Estreptozocina , Ratos Wistar , Antioxidantes/farmacologia , Ratos Sprague-Dawley
2.
Front Cell Infect Microbiol ; 14: 1436477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355267

RESUMO

Aims: Hyperglycemia is one of the adverse effects of tacrolimus (TAC), but the underlying mechanism is not fully identified. We used multi-omics analysis to evaluate the changes in the gut microbiota and metabolic profile of rats with TAC-induced diabetes. Methods: To establish a diabetic animal model, Sprague Dawley rats were divided randomly into two groups. Those in the TAC group received intraperitoneal injections of TAC (3 mg/kg) for 8 weeks, and those in the CON group served as the control. 16S rRNA sequencing was used to analyze fecal microbiota. The metabolites of the two groups were detected and analyzed by nontargeted and targeted metabolomics, including amino acids (AAs), bile acids (BAs), and short-chain fatty acids (SCFAs). Results: The rats treated with TAC exhibited hyperglycemia as well as changes in the gut microbiota and metabolites. Specifically, their gut microbiota had significantly higher abundances of Escherichia-Shigella, Enterococcus, and Allobaculum, and significantly lower abundances of Ruminococcus, Akkermansia, and Roseburia. In addition, they had significantly reduced serum levels of AAs including asparagine, aspartic acid, glutamic acid, and methionine. With respect to BAs, they had significantly higher serum levels of taurocholic acid (TCA), and glycochenodeoxycholic acid (GCDCA), but significantly lower levels of taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA). There were no differences in the levels of SCFAs between the two groups. Correlations existed among glucose metabolism indexes (fasting blood glucose and fasting insulin), gut microbiota (Ruminococcus and Akkermansia), and metabolites (glutamic acid, hydroxyproline, GCDCA, TDCA, and TUDCA). Conclusions: Both AAs and BAs may play crucial roles as signaling molecules in the regulation of TAC-induced diabetes.


Assuntos
Aminoácidos , Fezes , Microbioma Gastrointestinal , Metabolômica , RNA Ribossômico 16S , Ratos Sprague-Dawley , Tacrolimo , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Tacrolimo/farmacologia , Ratos , Masculino , Fezes/microbiologia , RNA Ribossômico 16S/genética , Aminoácidos/metabolismo , Aminoácidos/sangue , Diabetes Mellitus Experimental/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos Graxos Voláteis/metabolismo , Metaboloma/efeitos dos fármacos , Modelos Animais de Doenças , Hiperglicemia/metabolismo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/genética , Glicemia/metabolismo , Imunossupressores
3.
Clin Transl Med ; 14(10): e70026, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39350473

RESUMO

BACKGROUND: The immunoglobulin superfamily protein Trem2 (triggering receptor expressed on myeloid cells 2) is primarily expressed on myeloid cells where it functions to regulate macrophage-related immune response induction. While macrophages are essential mediators of diabetic wound healing, the specific regulatory role that Trem2 plays in this setting remains to be established. OBJECTIVE: This study was developed to explore the potential importance of Trem2 signalling in diabetic wound healing and to clarify the underlying mechanisms through which it functions. METHODS AND RESULTS: Following wound induction, diabetic model mice exhibited pronounced upregulation of Trem2 expression, which was primarily evident in macrophages. No cutaneous defects were evident in mice bearing a macrophage-specific knockout of Trem2 (T2-cKO), but they induced more pronounced inflammatory responses and failed to effectively repair cutaneous wounds, with lower levels of neovascularization, slower rates of wound closure, decreased collagen deposition following wounding. Mechanistically, we showed that interleukin (IL)-4 binds directly to Trem2, inactivating MAPK/AP-1 signalling to suppress the expression of inflammatory and chemoattractant factors. Co-culture of fibroblasts and macrophages showed that macrophages from T2-cKO mice suppressed the in vitro activation and proliferation of dermal fibroblasts through upregulation of leukaemia inhibitory factor (Lif). Injecting soluble Trem2 in vivo was also sufficient to significantly curtail inflammatory responses and to promote diabetic wound healing. CONCLUSIONS: These analyses offer novel insight into the role of IL-4/Trem2 signalling as a mediator of myeloid cell-fibroblast crosstalk that may represent a viable therapeutic target for efforts to enhance diabetic wound healing.


Assuntos
Interleucina-4 , Glicoproteínas de Membrana , Receptores Imunológicos , Cicatrização , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Cicatrização/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Interleucina-4/metabolismo , Interleucina-4/genética , Camundongos Knockout , Modelos Animais de Doenças , Diabetes Mellitus Experimental/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 14(1): 22812, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354039

RESUMO

This study aimed to characterize the role of female sex in the pathogenesis of diabetic retinopathy. In the retinae of female Ins2Akita-diabetic mice (F-IA), ovariectomized female Ins2Akita-diabetic mice (F-IA/OVX), male Ins2Akita-diabetic mice (M-IA), and female STZ-diabetic mice (F-STZ), the formation of reactive metabolites and post-translational modifications, damage to the neurovascular unit, and expression of cellular stress response genes were analyzed. Compared to the male diabetic retina, the concentrations of the glycation adduct fructosyl-lysine, the Maillard product 3-deoxyglucosone, and the reactive metabolite methylglyoxal were significantly reduced in females. In females, there was also less evidence of diabetic damage to the neurovascular unit, as shown by decreased pericyte loss and reduced microglial activation. In the male diabetic retina, the expression of several members of the crystallin gene family (Cryab, Cryaa, Crybb2, Crybb1, and Cryba4) was increased. Clinical data from type 1 diabetic females showed that premenopausal women had a significantly lower prevalence of diabetic retinopathy compared to postmenopausal women stratified for disease duration and glycemic control. These data emphasize the importance of estradiol in protecting the diabetic retina and highlight the pathogenic relevance of sex in diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Retina , Caracteres Sexuais , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Feminino , Masculino , Camundongos , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Retina/patologia , Humanos , Fatores Sexuais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças
5.
Drug Des Devel Ther ; 18: 3903-3919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224902

RESUMO

Purpose: Bone loss is a common complication of type 2 diabetes mellitus (T2DM). Circadian rhythms play a significant role in T2DM and bone remodeling. Eldecalcitol (ED-71), a novel active vitamin D analog, has shown promise in ameliorating T2DM. We aimed to investigate whether the circadian rhythm coregulator BMAL1 mediates the anti-osteoporotic effect of ED-71 in T2DM and its associated mechanisms. Methods: A T2DM mouse model was established using high-fat diet (HDF) and streptozotocin (STZ) injection, and blood glucose levels were monitored weekly. HE staining, Masson staining, and Micro-CT were performed to assess the changes in bone mass. IHC staining and IF staining were used to detect osteoblast status and BMAL1 expression and RT-qPCR was applied to detect the change of oxidative stress factors. In vitro, high glucose (HG) stimulation was used to simulate the cell environment in T2DM. RT-qPCR, Western blot, IF, ALP staining and AR staining were used to detect osteogenic differentiation and SIRT1/GSK3ß signaling pathway. DCFH-DA staining was used to detect reactive oxygen species (ROS) levels. Results: ED-71 increased bone mass and promoted osteogenesis in T2DM mice. Moreover, ED-71 inhibited oxidative stress and promoted BMAL1 expression in osteoblasts The addition of STL1267, an agonist of the BMAL1 transcriptional repressor protein REV-ERB, reversed the inhibitory effect of ED-71 on oxidative stress and the promotional effect on osteogenic differentiation. In addition, ED-71 facilitated SIRT1 expression and reduced GSK3ß activity. The inhibition of SIRT1 with EX527 partially attenuated ED-71's effects, whereas the GSK3ß inhibitor LiCl further enhanced ED-71's positive effects on BMAL1 expression. Conclusion: ED-71 ameliorates bone loss in T2DM by upregulating the circadian rhythm coregulator BMAL1 and promoting osteogenesis through inhibition of oxidative stress. The SIRT1/GSK3ß signaling pathway is involved in the regulation of BMAL1.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos Endogâmicos C57BL , Osteogênese , Regulação para Cima , Animais , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Osteogênese/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Estreptozocina , Vitamina D/farmacologia , Vitamina D/análogos & derivados , Dieta Hiperlipídica , Células Cultivadas
6.
BMC Endocr Disord ; 24(1): 184, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256735

RESUMO

BACKGROUND: Random-pattern skin flaps are commonly used to repair skin tissue defects in surgical tissue reconstruction. However, flap necrosis in the distal area due to ischemia injury is still challenging for its applications in plastic surgery. The complications of diabetes will further increase the risk of infection and necrosis. METHODS: This study induced type 2 diabetes mellitus (T2DM) rats with a high-fat diet and STZ. The survival rate of the skin flap was observed by adding inorganic sodium nitrate to drinking water. Histology and immunohistochemistry were used to detect the damage to the skin flap. The nitrate content was measured by total nitric oxide and nitrate/nitrite parameter assay. Dihydroethidium and malondialdehyde (MDA) assays were used to value oxidative stress. Rat colon feces were collected for 16s rRNA gene sequence. RESULTS: Our studies showed that nitrate administration leads to anti-obesity and anti-diabetic effects. Nitrate directly increased the survival area of skin flaps in diabetic rats and mean blood vessel density by enhancing angiogenesis, inhibiting apoptosis, and reducing oxidative stress. The 16s rRNA sequence revealed that nitrate may regulate the homeostasis of the gut microbiota and re-store energy metabolism. CONCLUSION: Dietary nitrate has been shown to maintain the homeostasis of oxidative stress and gut microbiota to promote flap survival in rats with T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Homeostase , Nitratos , Estresse Oxidativo , Retalhos Cirúrgicos , Animais , Estresse Oxidativo/efeitos dos fármacos , Ratos , Nitratos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratos Sprague-Dawley , Sobrevivência de Enxerto/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos
7.
J Diabetes Res ; 2024: 5544296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263491

RESUMO

Aim: The aim of the study is to identify the regulatory role of intestinal sweet taste receptors (STRs) and glucose transporters (SGLT1, GLUT2) and gut peptide secretion in duodenal-jejunal bypass (DJB)-ameliorated glycemic control in Type 2 diabetes. Materials and Methods: DJB and sham surgeries were performed in streptozotocin-induced diabetic male rats. The blood GLP-1 and GLP-2 levels were evaluated under feeding and fasting conditions. The expression of STRs (T1R2, T1R3), sweet taste signaling effector (Gα-gustducin), SGLT1, and GLUT2 was detected in the intestinal alimentary limb (A limb), biliopancreatic limb (BP limb), and common limb (C limb). The effects of STR inhibition on glucose control were measured with lactisole. Results: Glucose tolerance was improved in DJB-operated rats compared with the sham group, similar to that of normal control rats, without significant differences in food intake and body weight. The plasma GLP-1 levels of DJB rats were increased under diet-fed condition, and GLP-2 levels were increased after fasting. The villus height and crypt depth were significantly increased in the A limb of DJB-operated rats. In addition, GLP-1 expression was restored in enterocytes. The expression of T1R2, Gα-gustducin, and SGLT1 was elevated in the A limb after DJB, while GLUT2 was downregulated in the A, BP, and C limbs. The localization of GLUT2 was normalized in the three intestinal limbs after DJB. However, the beneficial effects of DJB on glucose control were abolished in the presence of lactisole in vivo. Conclusion: DJB ameliorates glycemic control probably by restoring STR-mediated glucose sensing and absorption with the responses of GLP-1 and GLP-2 to carbohydrate.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Duodeno , Peptídeo 1 Semelhante ao Glucagon , Transportador de Glucose Tipo 2 , Jejuno , Receptores Acoplados a Proteínas G , Transportador 1 de Glucose-Sódio , Animais , Masculino , Transportador 1 de Glucose-Sódio/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Jejuno/cirurgia , Jejuno/metabolismo , Duodeno/cirurgia , Duodeno/metabolismo , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Experimental/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Absorção Intestinal , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Ratos Sprague-Dawley , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Transducina/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/cirurgia
8.
PLoS One ; 19(9): e0304485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39226294

RESUMO

OBJECTIVE: This study aims to explore the impact of Nesfatin-1 on type 2 diabetic erectile dysfunction (T2DMED) and its underlying mechanism in regulating the phenotypic switching of corpus cavernosum smooth muscle cells (CCSMCs). METHODS: Twenty-four 4-week-old male C57 wild-type mice were randomly assigned to the control group, model group, and Nesfatin-1 treatment group. Monitoring included body weight, blood glucose levels, and penile cavernous pressure (ICP). Histochemistry and Western blot analyses were conducted to assess the expressions of α-SMA, OPN, and factors related to the PI3K/AKT/mTOR signaling pathway. CCSMCs were categorized into the control group, high glucose and high oleic acid group (GO group), Nesfatin-1 treatment group (GO+N group), sildenafil positive control group (GO+S group), and PI3K inhibitor group (GO+N+E group). Changes in phenotypic markers, cell morphology, and the PI3K/AKT/mTOR signaling pathway were observed in each group. RESULTS: (1) Nesfatin-1 significantly ameliorated the body size, body weight, blood glucose, glucose tolerance, and insulin resistance in T2DMED mice. (2) Following Nesfatin-1 treatment, the ICP/MSBP ratio and the peak of the ICP curve demonstrated a significant increase. (3) Nesfatin-1 significantly enhanced smooth muscle and reduced collagen fibers in the corpus cavernosum. (4) Nesfatin-1 notably increased α-SMA expression and decreased OPN expression in CCSMCs. (5) Nesfatin-1 elevated PI3K, p-AKT/AKT, and p-mTOR/mTOR levels in penile cavernous tissue. CONCLUSIONS: Nesfatin-1 not only effectively improves body weight and blood glucose levels in diabetic mice but also enhances erectile function and regulates the phenotypic switching of corpus cavernosum smooth muscle. The potential mechanism involves Nesfatin-1 activating the PI3K/AKT/mTOR signaling pathway to induce the conversion of CCSMCs to a contractile phenotype.


Assuntos
Disfunção Erétil , Miócitos de Músculo Liso , Nucleobindinas , Pênis , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Masculino , Disfunção Erétil/metabolismo , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Nucleobindinas/metabolismo , Pênis/metabolismo , Fenótipo , Camundongos Endogâmicos C57BL , Osteopontina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Actinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações
9.
Endocrinol Diabetes Metab ; 7(5): e515, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39238175

RESUMO

AIM: In previous studies, the researchers observed an increase in insulin secretion in STZ-treated diabetic rats following treatment with the hydroalcoholic extract of Securigera securidaca (HESS) seeds. This study focuses on the relationship between the antioxidant properties of HESS with changes in diabetic pancreatic tissue and the gene expression of factors that impact insulin secretion. METHODS: In this controlled experimental study, three varying doses of HESS were administered to three groups of diabetic rats induced by STZ. Oxidative stress indicators like total antioxidant capacity (TAC), total oxidant status (TOS) and malondialdehyde were assessed in both pancreatic and liver tissues. Pancreatic histology was studied post-haematoxylin staining. Insulin and FGF21 levels in the blood were measured using the ELISA method. The expression of Nrf2 and FGF21 genes in the pancreas and liver, along with MafA and PDX-1 genes in the pancreas, was quantified using real-time PCR. RESULTS: The administration of HESS in varying doses led to a dose-dependent rise in blood insulin levels and a decrease in blood glucose levels and oxidative stress. By reducing oxidative stress, HESS treatment lowered the heightened levels of NRF2 and FGF21 in the liver and pancreas of diabetic rats, improving pancreatic tissue health. As oxidative stress decreased, the expression of MafA and PDX1 genes in the pancreas approached levels seen in healthy rats. CONCLUSION: HESS elicits an increase in insulin secretion through the mitigation of oxidative stress and tissue damage, as well as the modulation of gene expression related to the insulin transcription factors PDX-1 and MafA.


Assuntos
Diabetes Mellitus Experimental , Secreção de Insulina , Insulina , Extratos Vegetais , Sementes , Regulação para Cima , Animais , Extratos Vegetais/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Sementes/química , Secreção de Insulina/efeitos dos fármacos , Insulina/metabolismo , Masculino , Securidaca , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Antioxidantes/farmacologia , Fígado/metabolismo , Transativadores , Proteínas de Homeodomínio
10.
PLoS One ; 19(9): e0309903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39240845

RESUMO

BACKGROUND: Diabetic skin wound is a complex problem due to the disruption of normal repairing program and lack of effective remedy. Lucilia sericata larvae (maggot) is a folk method to treat chronic skin wound, while its therapeutic effects on that caused by diabetic remains unknown. OBJECTIVE: This study aims to investigate the therapeutic effects of maggot extract (M.E.) on diabetic skin wound and its molecular mechanism by establishing the skin wound model of diabetic Sprague Dawley (SD) rats. METHODS: Diabetic model was established by injecting intraperitoneally streptozotocin in SD rats under specific pathogen-free (SPF) conditions. The rat fasting blood glucose values were ≧16.7 mmol/L 72 hours after intraperitoneal streptozotocin (60mg/kg body weight) injection. The rats were divided into five groups (n = 10/group): normal group: normal SD rats without any treatment, diabetic blank group: the diabetic rats without any treatment, Vaseline group: the diabetic rats dressed with Vaseline, recombinant human epidermal-growth-factor (rhEGF) group: the diabetic rats dressed with a mixture of Vaseline and 200 µg/g rhEGF, M.E. group: the diabetic rats dressed with a mixture of Vaseline and 150 µg/ml maggot extract. The round open wounds (1.0 cm in diameter) down to the muscle fascia were made on both sides of rat dorsa by removing the skin layer (epidermis and dermis) and were daily photographed for calculating their healing rates. Hematoxylin-eosin (HE) and Masson's trichrome staining were performed on skin wound sections to analyze re-epithelialization and granulation tissue formation. Immunohistochemical (IHC), immunofluorescent (IF) stainings and Western blotting were conducted to analyze the statuses of STAT3 signaling. RESULTS: The average wound healing rates on the 14th day were 91.7% in the normal, 79.6% in M.E., 71% in rhEGF, 55.1% in vaseline and 43.3% in the diabetes blank group. Morphological staining showed more active granulation tissue formation, re-epithelialization and neovascularization in M.E.-group than those in the blank and the vaseline-treated groups. Decreased p-STAT3 nuclear tranlocation and down-regulated Bcl-2, CyclinD1 and vascular endothelial growth factor (VEGF) expression were evidenced in the diabetic rats, which could be improved by rhEGF and especially M.E. CONCLUSION: Maggot extract would be an alternative and/or adjuvant candidate for the better management of diabetic skin wounds because of its activity in enhancing STAT3 activation.


Assuntos
Diabetes Mellitus Experimental , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Transdução de Sinais , Pele , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ratos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Masculino , Larva/efeitos dos fármacos , Dípteros
11.
J Pineal Res ; 76(6): e13008, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39300782

RESUMO

Diabetic retinopathy (DR) is characterized as a microvascular disease. Nonproliferative diabetic retinopathy (NPDR) presents with alterations in retinal blood flow and vascular permeability, thickening of the basement membrane, loss of pericytes, and formation of acellular capillaries. Endothelial-mesenchymal transition (EndMT) of retinal microvessels may play a critical role in advancing NPDR. Melatonin, a hormone primarily secreted by the pineal gland, is a promising therapeutic for DR. This study explored the EndMT in retinal microvessels of NPDR and its related mechanisms. The effect of melatonin on the retina of diabetic rats was evaluated by electroretinogram (ERG) and histopathologic slide staining. Furthermore, the effect of melatonin on human retinal microvascular endothelial cells (HRMECs) was detected by EdU incorporation assay, scratch assay, transwell assay, and tube formation test. Techniques such as RNA-sequencing, overexpression or knockdown of target genes, extraction of cytoplasmic and nuclear protein, co-immunoprecipitation (co-IP), and multiplex immunofluorescence facilitated the exploration of the mechanisms involved. Our findings reveal, for the first time, that melatonin attenuates diabetic retinopathy by regulating EndMT of retinal vascular endothelial cells via inhibiting the HDAC7/FOXO1/ZEB1 axis. Collectively, these results suggest that melatonin holds potential as a therapeutic strategy to reduce retinal vascular damage and protect vision in NPDR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Células Endoteliais , Histona Desacetilases , Melatonina , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Melatonina/farmacologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Animais , Ratos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Histona Desacetilases/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Humanos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Masculino , Proteína Forkhead Box O1/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Ratos Sprague-Dawley , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Retina/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Transição Endotélio-Mesênquima
12.
Physiol Res ; 73(4): 529-541, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39264076

RESUMO

While 3-N-butylphthalide (NBP) has demonstrated notable cardioprotective effects, its precise role in mitigating myocardial arrhythmia following ischemia/reperfusion (IR) injury in diabetes remains unclear. This study aimed to explore the potential mechanisms through which NBP mitigates reperfusion-induced myocardial arrhythmia in diabetic rats, with a particular focus on mitochondrial function and biogenesis, endoplasmic reticulum (ER) stress, and oxidative/inflammatory responses. Sixty Sprague-Dawley rats were divided into non-diabetic and diabetic groups, subjected to in-vivo myocardial IR injury, and treated with NBP (100 mg/kg, intraperitoneally) through different modalities: preconditioning, postconditioning, or a combination of both. Electrocardiography (ECG) was employed to assess the incidence and severity of arrhythmia. Fluorometric, Western blotting and ELISA analyses were utilized to measure the mitochondrial, ER stress, and cellular outcomes. Treatment of non-diabetic rats with NBP in preconditioned, postconditioned, and combined approaches significantly reduced cardiotroponin-I and the frequency and severity of arrhythmias induced by IR injury. However, only the combined preconditioning plus postconditioning approach of NBP had protective and antiarrhythmic effects in diabetic rats, in an additive manner. Moreover, the NBP combined approach improved mitochondrial function and upregulated the expression of PGC-1?, Sirt1, and glutathione while concurrently downregulating ER stress and oxidative and pro-inflammatory-related proteins in diabetic rats. In conclusion, the combined approach of NBP treatment was effective in mitigating myocardial arrhythmia in diabetic rats. This approach coordinates interactions within the mitochondria-endoplasmic reticulum network and inhibits oxidative and inflammatory mediators, offering a promising strategy for managing myocardial arrhythmia in diabetic patients. Key words: Myocardial Infarction, Mitochondria, Arrhythmia, Reperfusion, Diabetes, Ischemia.


Assuntos
Arritmias Cardíacas , Benzofuranos , Diabetes Mellitus Experimental , Estresse do Retículo Endoplasmático , Traumatismo por Reperfusão Miocárdica , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Masculino , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Ratos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico
13.
Physiol Rep ; 12(18): e70016, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39294856

RESUMO

The carotid body (CB) senses changes in arterial O2 partial pressure (pO2) and glucose levels; therefore, it is key for the detection of hypoxia and hypoglycemia. The CB has been suggested to detect pO2 through an increase in reactive oxygen species (ROS) in the mitochondria. However, the mechanism protecting the chemoreceptor cells and their mitochondria from ROS and hyperglycemia is poorly understood. Here we measured glutathione levels in CB mitochondria of control and in streptozotocin (STZ)-induced type 1 diabetic male Wistar rats. We found a dramatic reduction in total glutathione from 11.45 ± 1.30 µmol/mg protein in control rats to 1.45 ± 0.31 µmol/mg protein in diabetic rats. However, the ratio of reduced to oxidized glutathione, a measure of the redox index, was increased in diabetic rats compared to controls. We conclude that the mitochondria of CB chemoreceptor cells in type 1 diabetic male Wistar rats were likely under glutathione-reducing stress.


Assuntos
Corpo Carotídeo , Diabetes Mellitus Experimental , Glutationa , Mitocôndrias , Ratos Wistar , Animais , Masculino , Corpo Carotídeo/metabolismo , Ratos , Mitocôndrias/metabolismo , Glutationa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução
14.
Open Vet J ; 14(8): 1761-1770, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39308716

RESUMO

Background: Diabetes is a degenerative disease associated with metabolic disorders. The majority of people have type 2 diabetes mellitus (DM) insulin resistance due to an unhealthy lifestyle. The development of DM treatment is also growing, one of which is using conditioned medium. Aim: This study aims to determine the effect of Bovine umbilical mesenchymal stem cell-conditioned medium (BUMSC-CM) on nicotinamide (NA) and streptozotocin (STZ) induced rats as an animal model of DM. Methods: The study began with the in vitro docking of Cholecalciferol with aldolase reductase and glucokinase. In the in vivo study, animal models were divided into five groups: group A (negative control), group B (diabetic rats), group C (NA+STZ+Metformin), group D (NA+STZ+ BUMSC-CM 0.2 ml/kg BW), and group E (NA+STZ+ BUMSC-CM 0.5 ml/kg BW). Blood sugar levels were checked, and BUMSC-CM was administered by intramuscular injection at four-day intervals for a duration of 16 days. Blood sugar levels were also sampled, and GLUT4 histochemical and immunohistochemical staining was performed. Results: The results showed that Cholecalciferol can bind to aldolase reductase ASP43 and TYR48 and bind to glucokinase at TYR214 with hydrogen bonds. BUMSC-CM administration was able to reduce blood sugar well. In addition, BUMSC-CM also helped repair the tissue structure of the pancreas damaged by inflammation from STZ administration. Conclusion: This study can be concluded that the administration of BUMSC-CM can be an alternative cell-free therapy for patients with DM.


Assuntos
Diabetes Mellitus Experimental , Transportador de Glucose Tipo 4 , Células-Tronco Mesenquimais , Niacinamida , Estreptozocina , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Niacinamida/farmacologia , Niacinamida/administração & dosagem , Ratos , Células-Tronco Mesenquimais/efeitos dos fármacos , Bovinos , Meios de Cultivo Condicionados/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Ratos Wistar
15.
Biomed Pharmacother ; 179: 117397, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232386

RESUMO

Celastrol, the primary constituent of Tripterygium wilfordii, has demonstrated neuroprotective properties in rats with dementia by reducing inflammation. A high-fat diet and streptozotocin injection were utilized to establish a diabetic rat model, which was then employed to investigate the possible protective effect of celastrol against the development of diabetes-induced learning and memory deficits. Afterwards, the experimental animals received a dose of celastrol by gavage (4 mg/kg/d). An animal study showed that celastrol enhanced insulin sensitivity and glucose tolerance in diabetic rats. In the Morris water maze test, rats with diabetes performed poorly in terms of spatial learning and memory; treatment with celastrol improved these outcomes. Additionally, administration of celastrol downregulated the expression of inflammatory-related proteins (NF-κB, IKKα, TNF-α, IL-1ß, and IL-6) and greatly reduced the generation of Aß in the diabetic hippocampus tissue. Moreover, the insulin signaling pathway-related proteins PI3K, AKT, and GSK-3ß were significantly upregulated in diabetic rats after celastrol was administered. Also, celastrol prevented damage to the brain structures and increased the synthesis of synaptic proteins like PSD-95 and SYT1. In conclusion, celastrol exerts a neuroprotective effect by modulating the insulin signaling system and reducing inflammatory responses, which helps to ameliorate the cognitive impairment associated with diabetes.


Assuntos
Peptídeos beta-Amiloides , Diabetes Mellitus Experimental , Hipocampo , Inflamação , Insulina , Plasticidade Neuronal , Fármacos Neuroprotetores , Triterpenos Pentacíclicos , Transdução de Sinais , Triterpenos , Animais , Triterpenos Pentacíclicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Peptídeos beta-Amiloides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Insulina/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Plasticidade Neuronal/efeitos dos fármacos , Triterpenos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Ratos Sprague-Dawley , Resistência à Insulina
16.
Biomed Pharmacother ; 179: 117409, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39243434

RESUMO

BACKGROUND AND PURPOSE: Diabetic retinopathy (DR) is a prevalent complication of diabetes, with a rising global incidence, and can result in significant vision impairment and potential blindness in adults. Corilagin (COR) has been shown to regulate several pathological processes. However, the specific protective role and mechanism of action of COR in DR remain unknown. EXPERIMENTAL APPROACH: The protective effects and mechanisms of COR in DR were examined using the ARPE-19 cell line and C57BL/6 mice. Intraretinal tissue damage and molecular markers were evaluated to investigate the impact of COR on oxidative stress and cell death pathways. KEY RESULTS: In vitro, COR significantly reduced the cytotoxic effects of high glucose (HG) on ARPE-19 cells. Furthermore, COR also effectively decreased HG-induced lipid peroxidation, iron deposition, and ferroptosis and reduced damage to retinal tight junction proteins. Similarly, an in vivo study of streptozotocin (STZ)-induced DM mice showed that the daily gavage of COR for eight weeks notably alleviated DR. Mechanistically, COR activated the Nrf2 antioxidant signaling pathway both in vivo and in vitro, preventing HG-induced alterations in morphological and biochemical parameters. Notably, our study demonstrated that compared with controls, Nrf2 knockout mice and siNrf2-treated cells were more vulnerable to ferroptosis under HG conditions, and the protective effect of COR on DR was substantially diminished in these models. CONCLUSION AND IMPLICATIONS: These data indicate that COR has a protective effect against HG-induced retinal injury via a mechanism associated with the Nrf2-dependent antioxidant pathway and ferroptosis regulation.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Ferroptose , Glucosídeos , Taninos Hidrolisáveis , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Taninos Hidrolisáveis/farmacologia , Ferroptose/efeitos dos fármacos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glucosídeos/farmacologia , Humanos , Camundongos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Camundongos Knockout , Glucose/metabolismo , Glucose/toxicidade , Antioxidantes/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
17.
Front Endocrinol (Lausanne) ; 15: 1439351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39279997

RESUMO

Background: Endogenous insulin supplementation is essential for individuals with type 1 diabetes (T1D). However, current treatments, including pancreas transplantation, insulin injections, and oral medications, have significant limitations. The development of engineered cells that can secrete endogenous insulin offers a promising new therapeutic strategy for type 1 diabetes (T1D). This approach could potentially circumvent autoimmune responses associated with the transplantation of differentiated ß-cells or systemic delivery of viral vectors. Methods: We utilized CRISPR/Cas9 gene editing coupled with homology-directed repair (HDR) to precisely integrate a promoter-free EMCVIRES-insulin cassette into the 3' untranslated region (UTR) of the GAPDH gene in human HEK-293T cells. Subsequently quantified insulin expression levels in these engineered cells, the viability and functionality of the engineered cells when seeded on different cell vectors (GelMA and Cytopore I) were also assessed. Finally, we investigated the therapeutic potential of EMCVIRES-based insulin secretion circuits in reversing Hyperglycaemia in T1D mice. Result: Our results demonstrate that HDR-mediated gene editing successfully integrated the IRES-insulin loop into the genome of HEK-293T cells, a non-endocrine cell line, enabling the expression of human-derived insulin. Furthermore, Cytopore I microcarriers facilitated cell attachment and proliferation during in vitro culture and enhanced cell survival post-transplantation. Transplantation of these cell-laden microcarriers into mice led to the development of a stable, fat-encapsulated structure. This structure exhibited the expression of the platelet-endothelial cell adhesion molecule CD31, and no significant immune rejection was observed throughout the experiment. Diabetic mice that received the cell carriers reversed hyperglycemia, and blood glucose fluctuations under simulated feeding stimuli were very similar to those of healthy mice. Conclusion: In summary, our study demonstrates that Cytopore I microcarriers are biocompatible and promote long-term cell survival in vivo. The promoter-free EMCVIRES-insulin loop enables non-endocrine cells to secrete mature insulin, leading to a rapid reduction in glucose levels. We have presented a novel promoter-free genetic engineering strategy for insulin secretion and proposed an efficient cell transplantation method. Our findings suggest the potential to expand the range of cell sources available for the treatment of diabetes, offering new avenues for therapeutic interventions.


Assuntos
Diabetes Mellitus Tipo 1 , Edição de Genes , Hiperglicemia , Células Secretoras de Insulina , Insulina , Humanos , Animais , Hiperglicemia/terapia , Hiperglicemia/metabolismo , Camundongos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Insulina/genética , Células HEK293 , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Edição de Genes/métodos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Sítios Internos de Entrada Ribossomal/genética , Regiões Promotoras Genéticas , Sistemas CRISPR-Cas
18.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39337515

RESUMO

Diabetic cardiomyopathy is a major etiological factor in heart failure in diabetic patients, characterized by mitochondrial oxidative metabolism dysfunction, myocardial fibrosis, and marked glycogen elevation. The aim of the present study is to evaluate the effect of endurance training and prebiotic xylooligosaccharide (XOS) on the activity of key oxidative enzymes, myocardial collagen, and glycogen distribution as well as some serum biochemical risk markers in streptozotocin-induced type 1 diabetic rats. Male Wistar rats (n = 36) were divided into four diabetic groups (n = 9): sedentary diabetic rats on a normal diet (SDN), trained diabetic rats on a normal diet (TDN), trained diabetic rats on a normal diet with an XOS supplement (TD-XOS), and sedentary diabetic rats with an XOS supplement (SD-XOS). The results show that aerobic training managed to increase the enzyme activity of respiratory Complex I and II and the lactate dehydrogenase in the cardiomyocytes of the diabetic rats. Furthermore, the combination of exercise and XOS significantly decreased the collagen and glycogen content. No significant effects on blood pressure, heart rate or markers of inflammation were detected. These results demonstrate the beneficial effects of exercise, alone or in combination with XOS, on the cardiac mitochondrial enzymology and histopathology of diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Treino Aeróbico , Glucuronatos , Oligossacarídeos , Condicionamento Físico Animal , Prebióticos , Ratos Wistar , Animais , Ratos , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Glucuronatos/farmacologia , Prebióticos/administração & dosagem , Treino Aeróbico/métodos , Glicogênio/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/etiologia
19.
Atherosclerosis ; 397: 118556, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39222595

RESUMO

BACKGROUND AND AIMS: Atherosclerotic cardiovascular disease complicated by diabetes mellitus (DM) is the leading cause of death in diabetic patients, and it is strongly associated with macrophages and inflammasomes. It has been found that activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is closely associated with phosphatidylinositol 4-phosphate (PI4P) on the trans-Golgi. However, how PI4P and NLRP3 regulate macrophage function and its role in diabetic atherosclerotic plaques is unclear. METHODS: The expression of Pi4p and Nlrp3-inflammasome-related proteins in atherosclerosis in apolipoprotein E-deficient (Apoe-/-) and Apoe-/- DM mice was investigated. Then, Pi4p levels were affected by shRNA-Pi4kb or cDNA-Sac1 plasmid to investigate the effects of changes in Pi4p-related metabolic enzymes on macrophage function. Finally, genetically modified macrophages were injected into diabetic Apoe-/- mice to explore the effects on atherosclerosis. RESULTS: DM promoted plaque progression in atherosclerotic mice and increased expression of Pi4p and Nlrp3 in plaques. In addition, impaired macrophage function induced by high glucose was reversed by transfected shRNA-Pi4kb or cDNA-Sac1 plasmid. Furthermore, decreased levels of Pi4p reduced plaque area in diabetic Apoe-/- mice. CONCLUSIONS: Our data suggests that Pi4p/Nlrp3 in macrophages play an important role in the exacerbation of atherosclerosis in diabetic mice. Pi4p-related metabolizing enzymes (PI4KB and SAC1) may be a potential therapeutic strategy for diabetic atherosclerosis, and macrophage therapy is also a potential treatment.


Assuntos
Aterosclerose , Diabetes Mellitus Experimental , Progressão da Doença , Macrófagos , Placa Aterosclerótica , Transdução de Sinais , Animais , Masculino , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Diabetes Mellitus Experimental/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
20.
Pharmacol Res ; 208: 107392, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39233057

RESUMO

AIMS: Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM) without curative interventions currently. Huperzine A (Hup A), a natural alkaloid, has demonstrated significant hypoglycemic and anti-inflammatory effects. We aim to investigate the protective effects of Hup A on DN and explore the underlying mechanisms METHODS: We applied STZ induced diabetic rats as DN model and leveraged combination analysis of the transcriptome, metabolome, microbiome, and network pharmacology (NP). The total effect of Hup A on DN was detected (i.e. urine protein, renal tissue structure) and the differential genes were further verified at the level of diabetic patients, db/db mice and cells. Clinical data and small interfering RNA (siRNA)-Apoe were adopted. RESULTS: Hup A alleviated kidney injury in DN rats. Transcriptomics data and Western blot indicated that the improvement in DN was primarily associated with Apoe and Apoc2. Additionally, metabolomics data demonstrated that DN-induced lipid metabolism disruption was regulated by Hup A, potentially involving sphingosine. Hup A also enriched microbial diversity and ameliorated DN-induced microbiota imbalance. Spearman's correlation analysis demonstrated significant associations among the transcriptome, metabolome, and microbiome. Apoe level was positively correlated with clinical biomarkers in DN patients. Si-Apoe also played protective role in podocytes. NP analysis also suggested that Hup A may treat DN by modulating lipid metabolism, microbial homeostasis, and apoptosis, further validating our findings. CONCLUSIONS: Collectively, we provide the first evidence of the therapeutic effect of Hup A on DN, indicating that Hup A is a potential drug for the prevention and treatment of DN.


Assuntos
Alcaloides , Apolipoproteínas E , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos Sprague-Dawley , Sesquiterpenos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Animais , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Masculino , Humanos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Apolipoproteínas E/genética , Ratos , Camundongos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Transcriptoma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Farmacologia em Rede , Metabolômica , Pessoa de Meia-Idade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA