Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
1.
BMC Complement Med Ther ; 24(1): 350, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358802

RESUMO

BACKGROUND: Nano-drug delivery systems have become a promising approach to overcoming problems such as low solubility and cellular uptake of drugs. Along with various delivery devices, dendrimers are widely used through their unique features. PEG-citrate dendrimers are biocompatible and nontoxic, with the ability to improve drug solubility. Curcumin, a naturally occurring polyphenol, has multiple beneficial properties, such as antiviral activities. However, its optimum potential has been significantly hampered due to its poor water solubility, which leads to reduced bioavailability. So, the present study attempted to address this issue and investigate its antiviral effects against HIV-1. METHOD: The G2 PEG-citrate dendrimer was synthesized. Then, curcumin was conjugated to it directly. FTIR, HNMR, DLS, and LCMS characterized the structure of products. The conjugate displayed an intense yellow color. In addition, increased aqueous solubility and cell permeability of curcumin were achieved based on flow cytometry results. So, it could be a suitable vehicle for improving the therapeutic applications of curcumin. Moreover, cell toxicity was assessed using XTT method. Ultimately, the SCR HIV system provided an opportunity to evaluate the level of HIV-1 inhibition by the curcumin-dendrimer conjugate using a p24 HIV ELISA kit. RESULTS: The results demonstrated a 50% up to 90% inhibition of HIV proliferation at 12 µm and 60 µm, respectively. Inhibition of HIV-1 at concentrations much lower than CC50 (300 µM) indicates a high potential of curcumin-dendrimer conjugate against this virus. CONCLUSION: Thereby, curcumin-dendrimer conjugate proves to be a promising tool to use in HIV-1 therapy.


Assuntos
Curcumina , Dendrímeros , Infecções por HIV , HIV-1 , Polietilenoglicóis , Curcumina/farmacologia , Curcumina/química , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , HIV-1/efeitos dos fármacos , Polietilenoglicóis/química , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Ácido Cítrico/química , Nanopartículas/química
2.
J Nanobiotechnology ; 22(1): 559, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267043

RESUMO

OBJECTIVE: The exacerbation of extreme high-temperature events due to global climate change poses a significant challenge to public health, particularly impacting the central nervous system through heat stroke. This study aims to develop Poly(amidoamine) (PAMAM) nanoparticles loaded with curcumin (PAMAM@Cur) to enhance its therapeutic efficacy in hypothalamic neural damage in a heat stroke model and explore its potential mechanisms. METHODS: Curcumin (Cur) was encapsulated into PAMAM nanoparticles through a hydrophobic interaction method, and various techniques were employed to characterize their physicochemical properties. A heat stroke mouse model was established to monitor body temperature and serum biochemical parameters, conduct behavioral assessments, histological examinations, and biochemical analyses. Transcriptomic and proteomic analyses were performed to investigate the therapeutic mechanisms of PAMAM@Cur, validated in an N2a cell model. RESULTS: PAMAM@Cur demonstrated good stability, photostability, cell compatibility, significant blood-brain barrier (BBB) penetration capability, and effective accumulation in the brain. PAMAM@Cur markedly improved behavioral performance and neural cell structural integrity in heat stroke mice, alleviated inflammatory responses, with superior therapeutic effects compared to Cur or PAMAM alone. Multi-omics analysis revealed that PAMAM@Cur regulated antioxidant defense genes and iron death-related genes, particularly upregulating the PCBP2 protein, stabilizing SLC7A11 and GPX4 mRNA, and reducing iron-dependent cell death. CONCLUSION: By enhancing the drug delivery properties of Cur and modulating molecular pathways relevant to disease treatment, PAMAM@Cur significantly enhances the therapeutic effects against hypothalamic neural damage induced by heat stroke, showcasing the potential of nanotechnology in improving traditional drug efficacy and providing new strategies for future clinical applications. SIGNIFICANCE: This study highlights the outlook of nanotechnology in treating neurological disorders caused by heat stroke, offering a novel therapeutic approach with potential clinical applications.


Assuntos
Curcumina , Golpe de Calor , Nanopartículas , Curcumina/farmacologia , Curcumina/química , Animais , Golpe de Calor/tratamento farmacológico , Camundongos , Nanopartículas/química , Masculino , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Portadores de Fármacos/química , Dendrímeros/química , Dendrímeros/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Linhagem Celular , Poliaminas
3.
Sci Adv ; 10(39): eadn8117, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39321303

RESUMO

The rapid emergence and spread of multidrug-resistant bacterial pathogens require the development of antibacterial agents that are robustly effective while inducing no toxicity or resistance development. In this context, we designed and synthesized amphiphilic dendrimers as antibacterial candidates. We report the promising potent antibacterial activity shown by the amphiphilic dendrimer AD1b, composed of a long hydrophobic alkyl chain and a tertiary amine-terminated poly(amidoamine) dendron, against a panel of Gram-negative bacteria, including multidrug-resistant Escherichia coli and Acinetobacter baumannii. AD1b exhibited effective activity against drug-resistant bacterial infections in vivo. Mechanistic studies revealed that AD1b targeted the membrane phospholipids phosphatidylglycerol (PG) and cardiolipin (CL), leading to the disruption of the bacterial membrane and proton motive force, metabolic disturbance, leakage of cellular components, and, ultimately, cell death. Together, AD1b that specifically interacts with PG/CL in bacterial membranes supports the use of small amphiphilic dendrimers as a promising strategy to target drug-resistant bacterial pathogens and addresses the global antibiotic crisis.


Assuntos
Antibacterianos , Dendrímeros , Fosfatidilgliceróis , Dendrímeros/química , Dendrímeros/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fosfatidilgliceróis/química , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Animais , Acinetobacter baumannii/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo
4.
Molecules ; 29(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339289

RESUMO

In this study, we hypothesized that biotinylated and/or glycidol-flanked fourth-generation polyamidoamine (PAMAM G4) dendrimers could be a tool for efficient drug transport into glioma and liver cancer cells. For this purpose, native PAMAM (G4) dendrimers, biotinylated (G4B), glycidylated (G4gl), and biotinylated and glycidylated (G4Bgl), were synthesized, and their cytotoxicity, uptake, and accumulation in vitro and in vivo were studied in relation to the transport mediated by the sodium-dependent multivitamin transporter (SMVT). The studies showed that the human temozolomide-resistant glioma cell line (U-118 MG) and hepatocellular carcinoma cell line (HepG2) indicated a higher amount of SMVT than human HaCaT keratinocytes (HaCaTs) used as a model of normal cells. The G4gl and G4Bgl dendrimers were highly biocompatible in vitro (they did not affect proliferation and mitochondrial activity) against HaCaT and U-118 MG glioma cells and in vivo (against Caenorhabditis elegans and Wistar rats). The studied compounds penetrated efficiently into all studied cell lines, but inconsistently with the uptake pattern observed for biotin and disproportionately for the level of SMVT. G4Bgl was taken up and accumulated after 48 h to the highest degree in glioma U-118 MG cells, where it was distributed in the whole cell area, including the nuclei. It did not induce resistance symptoms in glioma cells, unlike HepG2 cells. Based on studies on Wistar rats, there are indications that it can also penetrate the blood-brain barrier and act in the central nervous system area. Therefore, it might be a promising candidate for a carrier of therapeutic agents in glioma therapy. In turn, visualization with a confocal microscope showed that biotinylated G4B penetrated efficiently into the body of C. elegans, and it may be a useful vehicle for drugs used in anthelmintic therapy.


Assuntos
Biotinilação , Dendrímeros , Portadores de Fármacos , Glioma , Neoplasias Hepáticas , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Ratos , Portadores de Fármacos/química , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Poliaminas/química , Linhagem Celular Tumoral , Células Hep G2 , Ratos Wistar , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
Int J Biol Macromol ; 278(Pt 3): 134634, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128760

RESUMO

Bacterial resistance to antibiotics is a significant challenge that is associated with increased morbidity and mortality. Gram-negative bacteria are particularly problematic due to an outer membrane (OM). Current alternatives to antibiotics include antimicrobial peptides or proteins and multifunctional systems such as dendrimers. Antimicrobial proteins such as lysins can degrade the bacterial cell wall, whereas dendrimers can permeabilize the OM, enhancing the activity of endolysins against gram-negative bacteria. In this study, we present a three-stage action of endolysin combined with two different carbosilane (CBS) silver metallodendrimers, in which the periphery is modified with N-heterocyclic carbene (NHC) ligands coordinating a silver atom. The different NHC ligands contained hydrophobic methyl or N-donor pyridyl moieties. The effects of these endolysin/dendrimer combinations are based on OM permeabilization, peptidoglycan degradation, and reactive oxygen species production. The results showed that CBS possess a permeabilization effect (first action), significantly reduced bacterial growth at higher concentrations alone and in the presence of endolysin, increased ROS production (second action), and led to bacterial cell damage (third action). The complex formed between the CHAP domain of endolysin and a CBS silver metallodendrimer, with a triple mechanism of action, may represent an excellent alternative to other antimicrobials with only one resistance mechanism.


Assuntos
Antibacterianos , Dendrímeros , Endopeptidases , Bactérias Gram-Negativas , Peptidoglicano , Espécies Reativas de Oxigênio , Silanos , Peptidoglicano/metabolismo , Peptidoglicano/química , Espécies Reativas de Oxigênio/metabolismo , Silanos/química , Silanos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Dendrímeros/química , Dendrímeros/farmacologia , Endopeptidases/metabolismo , Endopeptidases/química , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Prata/química , Prata/farmacologia , Domínios Proteicos , Permeabilidade da Membrana Celular/efeitos dos fármacos
6.
ACS Macro Lett ; 13(9): 1156-1163, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39158183

RESUMO

Bacteria in tumor microenvironments promote carcinogenesis and trigger complications, suggesting the significance of intervening in bacterial growth in cancer treatment. Here, dendrimer-derived mimics (DMs) of host defense peptides (HDPs) were designed for antibacterial and anticancer therapy, which feature a dendronized polylysine core and polycaprolactone arms. DMs displayed not only remarkable activities against Staphylococcus aureus and human lung cancer cells, but also exceptional selectivity. The membranolytic mechanism revealed by morphology analysis explained their low susceptibility to induce resistance. Further, the optimized DM inhibited tumor growth in the subcutaneous tumor model when administered via intraperitoneal injection and exhibited negligible toxicity to tissues. Overall, we combined the superiority of dendrimers and the mechanism from HDPs to design agents with dual antibacterial and anticancer activities that possess great potential for clinical oncology therapy.


Assuntos
Antibacterianos , Antineoplásicos , Dendrímeros , Polilisina , Staphylococcus aureus , Humanos , Dendrímeros/química , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Polilisina/química , Polilisina/farmacologia , Polilisina/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Poliésteres/química , Poliésteres/farmacologia
7.
J Biomater Sci Polym Ed ; 35(13): 2049-2067, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38994903

RESUMO

Cartilage tissue engineering holds great promise for efficient cartilage regeneration. However, early inflammatory reactions to seed cells and/or scaffolds impede this process. Consequently, managing inflammation is of paramount importance. Moreover, due to the body's restricted chondrogenic capacity, inducing cartilage regeneration becomes imperative. Thus, a controlled platform is essential to establish an anti-inflammatory microenvironment before initiating the cartilage regeneration process. In this study, we utilized fifth-generation polyamidoamine dendrimers (G5) as a vehicle for drugs to create composite nanoparticles known as G5-Dic/Sr. These nanoparticles were generated by surface modification with diclofenac (Dic), known for its potent anti-inflammatory effects, and encapsulating strontium (Sr), which effectively induces chondrogenesis, within the core. Our findings indicated that the G5-Dic/Sr nanoparticle exhibited selective Dic release during the initial 9 days and gradual Sr release from days 3 to 15. Subsequently, these nanoparticles were incorporated into a gelatin methacryloyl (GelMA) hydrogel, resulting in GelMA@G5-Dic/Sr. In vitro assessments demonstrated GelMA@G5-Dic/Sr's biocompatibility with bone marrow stem cells (BMSCs). The enclosed nanoparticles effectively mitigated inflammation in lipopolysaccharide-induced RAW264.7 macrophages and significantly augmented chondrogenesis in BMSCs cocultures. Implanting BMSCs-loaded GelMA@G5-Dic/Sr hydrogels in immunocompetent rabbits for 2 and 6 weeks revealed diminished inflammation and enhanced cartilage formation compared to GelMA, GelMA@G5, GelMA@G5-Dic, and GelMA@G5/Sr hydrogels. Collectively, this study introduces an innovative strategy to advance cartilage regeneration by temporally modulating inflammation and chondrogenesis in immunocompetent animals. Through the development of a platform addressing the temporal modulation of inflammation and the limited chondrogenic capacity, we offer valuable insights to the field of cartilage tissue engineering.


Assuntos
Condrogênese , Dendrímeros , Diclofenaco , Inflamação , Nanopartículas , Estrôncio , Condrogênese/efeitos dos fármacos , Estrôncio/química , Estrôncio/farmacologia , Animais , Diclofenaco/farmacologia , Diclofenaco/química , Dendrímeros/química , Dendrímeros/farmacologia , Nanopartículas/química , Inflamação/tratamento farmacológico , Coelhos , Camundongos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Hidrogéis/química , Hidrogéis/farmacologia , Propriedades de Superfície , Gelatina/química , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Liberação Controlada de Fármacos , Engenharia Tecidual , Portadores de Fármacos/química
8.
ACS Appl Mater Interfaces ; 16(30): 39153-39164, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018481

RESUMO

Temporomandibular joint osteoarthritis (TMJ OA) is characterized by the degeneration of cartilage and subchondral bone. In this study, we observed a significant increase in cell-free DNA (cfDNA) levels during the progression of TMJ OA. Bioinformatics analysis identified TLR9 as a pivotal molecule in TMJ OA pathogenesis. The polyamidoamine (PAMAM) dendrimer characterized by a well-structured, highly branched, and reactive nature, exhibits robust binding and clearance capabilities for cfDNA. However, the abundant amino groups on the surface of PAMAM lead to its inherent toxicity. To mitigate this, PEG-5000 was conjugated to the surface of PAMAM dendrimers, enhancing safety. Our results indicate that PEG-PAMAM effectively inhibits the upregulation of the TLR9 protein in TMJ OA, significantly suppressing the activation of the p-IκBα/p-NF-κB signaling pathway and subsequently decreasing chondrocyte inflammation and apoptosis, as evidenced by both in vivo and in vitro experiments. We conclude that PEG-PAMAM is a safe and effective material for in vivo applications, offering a promising therapeutic strategy for TMJ OA by targeting cfDNA clearance.


Assuntos
Ácidos Nucleicos Livres , Dendrímeros , Osteoartrite , Polietilenoglicóis , Articulação Temporomandibular , Dendrímeros/química , Dendrímeros/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Polietilenoglicóis/química , Articulação Temporomandibular/patologia , Articulação Temporomandibular/efeitos dos fármacos , Articulação Temporomandibular/metabolismo , Adsorção , Humanos , Receptor Toll-Like 9/metabolismo , Masculino , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Nylons/química , Nylons/farmacologia , Apoptose/efeitos dos fármacos , Camundongos
9.
Int J Nanomedicine ; 19: 4995-5010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832336

RESUMO

Introduction: Prostate cancer (PC) is the second most common cancer and the fifth most frequent cause of cancer death among men. Prostate-specific membrane antigen (PSMA) expression is associated with aggressive PC, with expression in over 90% of patients with metastatic disease. Those characteristics have led to its use for PC diagnosis and therapies with radiopharmaceuticals, antibody-drug conjugates, and nanoparticles. Despite these advancements, none of the current therapeutics are curative and show some degree of toxicity. Here we present the synthesis and preclinical evaluation of a multimodal, PSMA-targeted dendrimer-drug conjugate (PT-DDC), synthesized using poly(amidoamine) (PAMAM) dendrimers. PT-DDC was designed to enable imaging of drug delivery, providing valuable insights to understand and enhance therapeutic response. Methods: The PT-DDC was synthesized through consecutive conjugation of generation-4 PAMAM dendrimers with maytansinoid-1 (DM1) a highly potent antimitotic agent, Cy5 infrared dye for optical imaging, 2,2',2"-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (NOTA) chelator for radiolabeling with copper-64 and positron emission tomography tomography/computed tomography (PET/CT), lysine-urea-glutamate (KEU) PSMA-targeting moiety and the remaining terminal primary amines were capped with butane-1,2-diol. Non-targeted control dendrimer-drug conjugate (Ctrl-DDC) was formulated without conjugation of KEU. PT-DDC and Ctrl-DDC were characterized using high-performance liquid chromatography, matrix assisted laser desorption ionization mass spectrometry and dynamic light scattering. In vitro and in vivo evaluation of PT-DDC and Ctrl-DDC were carried out in isogenic human prostate cancer PSMA+ PC3 PIP and PSMA- PC3 flu cell lines, and in mice bearing the corresponding xenografts. Results: PT-DDC was stable in 1×PBS and human blood plasma and required glutathione for DM1 release. Optical, PET/CT and biodistribution studies confirmed the in vivo PSMA-specificity of PT-DDC. PT-DDC demonstrated dose-dependent accumulation and cytotoxicity in PSMA+ PC3 PIP cells, and also showed growth inhibition of the corresponding tumors. PT-DDC did not accumulate in PSMA- PC3 flu tumors and did not inhibit their growth. Ctrl-DDC did not show PSMA specificity. Conclusion: In this study, we synthesized a multimodal theranostic agent capable of delivering DM1 and a radionuclide to PSMA+ tumors. This approach holds promise for enhancing image-guided treatment of aggressive, metastatic subtypes of prostate cancer.


Assuntos
Antígenos de Superfície , Dendrímeros , Glutamato Carboxipeptidase II , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Dendrímeros/química , Dendrímeros/farmacocinética , Dendrímeros/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Glutamato Carboxipeptidase II/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico
10.
J Mater Chem B ; 12(25): 6175-6189, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38831689

RESUMO

In this study, the heavy-atom-free BODIPY dendrimer TM4-BDP was synthesized for near-infrared photodynamic therapy, and was composed of a triphenylamine-BODIPY dimer and four 1-(2-morpholinoethyl)-1H-indole-3-ethenyl groups. The TM4-BDP could achieve near-infrared photodynamic therapy through two different photosensitive pathways, which include one-photon excitation at 660 nm and two-photon excitation at 1000 nm. In the one-photon excitation pathway, the TM4-BDP could generate singlet oxygen and superoxide radicals under 660 nm illumination. In addition, the one-photon PDT experiment in human nasopharyngeal carcinoma (CNE-2) cells also indicated that the TM4-BDP could specifically accumulate in lysosomes and show great cell phototoxicity with an IC50 of 22.1 µM. In the two-photon excitation pathway, the two-photon absorption cross-section at 1030 nm of TM4-BDP was determined to be 383 GM, which means that it could generate reactive oxygen species (ROS) under 1000 nm femtosecond laser excitation. Moreover, the two-photon PDT experiment in zebrafish also indicated the TM4-BDP could be used for two-photon fluorescence imaging and two-photon induced ROS generation in biological environments. Furthermore, in terms of the ROS generation mechanism, the TM4-BDP employed a novel spin-vibronic coupling intersystem crossing (SV-ISC) process for the mechanism of ROS generation and the femtosecond transient absorption spectra indicated that this novel SV-ISC mechanism was closely related to its charge transfer state lifetime. These above experiments of TM4-BDP demonstrate that the dendrimer design is an effective strategy for constructing heavy-atom-free BODIPY photosensitizers in the near-infrared region and lay the foundation for two-photon photodynamic therapy in future clinical trials.


Assuntos
Compostos de Boro , Dendrímeros , Fotoquimioterapia , Fótons , Fármacos Fotossensibilizantes , Peixe-Zebra , Animais , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Dendrímeros/química , Dendrímeros/farmacologia , Dendrímeros/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Humanos , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral
11.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892071

RESUMO

Peptides displaying antimicrobial properties are being regarded as useful tools to evade and combat antimicrobial resistance, a major public health challenge. Here we have addressed dendrimers, attractive molecules in pharmaceutical innovation and development displaying broad biological activity. Triazine-based dendrimers were fully synthesized in the solid phase, and their antimicrobial activity and some insights into their mechanisms of action were explored. Triazine is present in a large number of compounds with highly diverse biological targets with broad biological activities and could be an excellent branching unit to accommodate peptides. Our results show that the novel peptide dendrimers synthesized have remarkable antimicrobial activity against Gram-negative bacteria (E. coli and P. aeruginosa) and suggest that they may be useful in neutralizing the effect of efflux machinery on resistance.


Assuntos
Dendrímeros , Escherichia coli , Testes de Sensibilidade Microbiana , Triazinas , Dendrímeros/química , Dendrímeros/síntese química , Dendrímeros/farmacologia , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese química , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química
12.
J Am Chem Soc ; 146(25): 17240-17249, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865148

RESUMO

Antibiotic-resistant pathogens have been declared by the WHO as one of the major public health threats facing humanity. For that reason, there is an urgent need for materials with inherent antibacterial activity able to replace the use of antibiotics, and in this context, hydrogels have emerged as a promising strategy. Herein, we introduce the next generation of cationic hydrogels with antibacterial activity and high versatility that can be cured on demand in less than 20 s using thiol-ene click chemistry (TEC) in aqueous conditions. The approach capitalizes on a two-component system: (i) telechelic polyester-based dendritic-linear-dendritic (DLDs) block copolymers of different generations heterofunctionalized with allyl and ammonium groups, as well as (ii) polyethylene glycol (PEG) cross-linkers functionalized with thiol groups. These hydrogels resulted in highly tunable materials where the antibacterial performance can be adjusted by modifying the cross-linking density. Off-stoichiometric hydrogels showed narrow antibacterial activity directed toward Gram-negative bacteria. The presence of pending allyls opens up many possibilities for functionalization with biologically interesting molecules. As a proof-of-concept, hydrophilic cysteamine hydrochloride as well as N-hexyl-4-mercaptobutanamide, as an example of a thiol with a hydrophobic alkyl chain, generated three-component networks. In the case of cysteamine derivatives, a broader antibacterial activity was noted than the two-component networks, inhibiting the growth of Gram-positive bacteria. Additionally, these systems presented high versatility, with storage modulus values ranging from 270 to 7024 Pa and different stability profiles ranging from 1 to 56 days in swelling experiments. Good biocompatibility toward skin cells as well as strong adhesion to multiple surfaces place these hydrogels as interesting alternatives to conventional antibiotics.


Assuntos
Antibacterianos , Hidrogéis , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Dendrímeros/química , Dendrímeros/farmacologia , Testes de Sensibilidade Microbiana , Adesivos/química , Adesivos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Humanos , Estrutura Molecular , Química Click
13.
Bioorg Chem ; 150: 107567, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936047

RESUMO

Di-branched and tetra-branched versions of a previously reported analogue of the lipopeptide battacin were successfully synthesised using thiol-maleimide click and 1, 2, 3-triazole click chemistry. Antimicrobial studies against drug resistant clinical isolates of Escherichia coli (ESBL E. coli Ctx-M14), Pseudomonas aeruginosa (P. aeruginosa Q502), and Methicillin resistant Staphylococcus aureus (MRSA ATCC 33593), as well as clinically isolated Acinetobacter baumannii (A. baumannii ATCC 19606), and P. aeruginosa (ATCC 27853), revealed that the dendrimeric peptides have antimicrobial activity in the low micromolar range (0.5 -- 4 µM) which was 10 times more potent than the monomer peptides. Under high salt concentrations (150 mM NaCl, 2 mM MgCl2, and 2.5 mM CaCl2) the di-branched lipopeptides retained their antimicrobial activity while the monomer peptides were not active (>100 µM). The di-branched triazole click lipopeptide, Peptide 12, was membrane lytic, showed faster killing kinetics, and exhibited antibiofilm activity against A. baumannii and MRSA and eradicated > 85 % preformed biofilms at low micromolar concentrations. The di-branched analogues were > 30-fold potent than the monomers against Candida albicans. Peptide 12 was not haemolytic (HC10 = 932.12 µM) and showed up to 40-fold higher selectivity against bacteria and fungi than the monomer peptide. Peptide 12 exhibited strong proteolytic stability (>80 % not degraded) in rat serum over 24 h whereas > 95 % of the thiol-maleimide analogue (Peptide 10) was degraded. The tetra-branched peptides showed comparable antibacterial potency to the di-branched analogues. These findings indicate that dual branching using triazole click chemistry is a promising strategy to improve the antimicrobial activity and proteolytic stability of battacin based lipopeptides. The information gathered can be used to build effective antimicrobial dendrimeric peptides as new peptide antibiotics.


Assuntos
Antibacterianos , Dendrímeros , Lipopeptídeos , Testes de Sensibilidade Microbiana , Humanos , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Química Click , Dendrímeros/química , Dendrímeros/farmacologia , Dendrímeros/síntese química , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Lipopeptídeos/farmacologia , Lipopeptídeos/síntese química , Lipopeptídeos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Estrutura-Atividade , Peptídeos/química , Peptídeos/farmacologia
14.
Int J Pharm ; 661: 124389, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38942185

RESUMO

We have recently witnessed that considerable progresses have been made in the rapid detection and appropriate treatments of COVID-19, but still this virus remains one of the main targets of world research. Based on the knowledge of the complex mechanism of viral infection we designed peptide-dendrimer inhibitors of SARS-CoV-2with the aim to block cell infection through interfering with the host-pathogen interactions. We used two different strategies: i) the first one aims at hindering the virus anchorage to the human cell; ii) the second -strategy points to interfere with the mechanism of virus-cell membrane fusion. We propose the use of different nanosized carriers, formed by several carbosilane dendritic wedges to deliver two different peptides designed to inhibit host interaction or virus entry. The antiviral activity of the peptide-dendrimers, as well as of free peptides and free dendrimers was evaluated through the use of SARS-CoV-2 pseudotyped lentivirus. The results obtained show that peptides designed to block host-pathogen interaction represent a valuable strategy for viral inhibition.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Dendrímeros , Peptídeos , SARS-CoV-2 , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Peptídeos/química , Peptídeos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Desenho de Fármacos , COVID-19/virologia , Silanos/química , Silanos/farmacologia , Interações Hospedeiro-Patógeno
15.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731451

RESUMO

A novel second-generation blue fluorescent polyamidoamine dendrimer peripherally modified with sixteen 4-N,N-dimethylaninoethyloxy-1,8-naphthalimide units was synthesized. Its basic photophysical characteristics were investigated in organic solvents of different polarity. It was found that in these solvents, the dendrimer is colorless and emitted blue fluorescence with different intensities depending on their polarity. The effect of the pH of the medium on the fluorescence intensity was investigated and it was found that in the acidic medium, the fluorescence is intense and is quenched in the alkaline medium. The ability of the dendrimer to detect metal ions (Pb2+, Zn2+, Mg2+, Sn2+, Ba2+, Ni2+, Sn2+, Mn2+, Co2+, Fe3+, and Al3+) was also investigated, and it was found that in the presence of Fe3+, the fluorescent intensity was amplified more than 66 times. The antimicrobial activity of the new compound has been tested in vitro against Gram-positive B. cereus and Gram-negative P. aeruginosa. The tests were performed in the dark and after irradiation with visible light. The antimicrobial activity of the compound enhanced after light irradiation and B. cereus was found slightly more sensitive than P. aeruginosa. The increase in antimicrobial activity after light irradiation is due to the generation of singlet oxygen particles, which attack bacterial cell membranes.


Assuntos
Dendrímeros , Testes de Sensibilidade Microbiana , Naftalimidas , Poliaminas , Naftalimidas/química , Naftalimidas/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Poliaminas/química , Poliaminas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fluorescência , Pseudomonas aeruginosa/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Bacillus cereus/efeitos dos fármacos , Luz , Corantes Fluorescentes/química , Espectrometria de Fluorescência
16.
ACS Appl Mater Interfaces ; 16(20): 25665-25675, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38735053

RESUMO

Tumor-associated macrophages (TAMs) usually adopt a tumor-promoting M2-like phenotype, which largely impedes the immune response and therapeutic efficacy of solid tumors. Repolarizing TAMs from M2 to the antitumor M1 phenotype is crucial for reshaping the tumor immunosuppressive microenvironment (TIME). Herein, we developed self-assembled nanoparticles from the polymeric prodrug of resiquimod (R848) to reprogram the TIME for robust cancer immunotherapy. The polymeric prodrug was constructed by conjugating the R848 derivative to terminal amino groups of the linear dendritic polymer composed of linear poly(ethylene glycol) and lysine dendrimer. The amphiphilic prodrug self-assembled into nanoparticles (PLRS) of around 35 nm with a spherical morphology. PLRS nanoparticles could be internalized by antigen-presenting cells (APCs) in vitro and thus efficiently repolarized macrophages from M2 to M1 and facilitated the maturation of APCs. In addition, PLRS significantly inhibited tumor growth in the 4T1 orthotopic breast cancer model with much lower systemic side effects. Mechanistic studies suggested that PLRS significantly stimulated the TIME by repolarizing TAMs into the M1 phenotype and increased the infiltration of cytotoxic T cells into the tumor. This study provides an effective polymeric prodrug-based strategy to improve the therapeutic efficacy of R848 in cancer immunotherapy.


Assuntos
Imidazóis , Imunoterapia , Nanopartículas , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Animais , Camundongos , Imidazóis/química , Imidazóis/farmacologia , Nanopartículas/química , Feminino , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Humanos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Células RAW 264.7 , Polietilenoglicóis/química , Microambiente Tumoral/efeitos dos fármacos , Dendrímeros/química , Dendrímeros/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo
17.
J Colloid Interface Sci ; 670: 486-498, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772264

RESUMO

Establishing a physical barrier between the peritoneum and the cecum is an effective method to reduce the risk of postoperative abdominal adhesions. Meloxicam (MX), a nonsteroidal anti-inflammatory drug has also been applied to prevent postoperative adhesions. However, its poor water solubility has led to low bioavailability. Herein, we developed an injectable hydrogel as a barrier and drug carrier for simultaneous postoperative adhesion prevention and treatment. A third-generation polyamide-amine dendrimer (G3) was exploited to dynamically combine with MX to increase the solubility and the bioavailability. The formed G3@MX was further used to crosslink with poly-γ-glutamic acid (γ-PGA) to prepare a hydrogel (GP@MX hydrogel) through the amide bonding. In vitro and in vivo experiments evidenced that the hydrogel had good biosafety and biodegradability. More importantly, the prepared hydrogel could control the release of MX, and the released MX is able to inhibit inflammatory responses and balance the fibrinolytic system in the injury tissues in vivo. The tunable rheological and mechanical properties (compressive moduli: from âˆ¼ 57.31 kPa to âˆ¼ 98.68 kPa;) and high anti-oxidant capacity (total free radical scavenging rate of âˆ¼ 94.56 %), in conjunction with their syringeability and biocompatibility, indicate possible opportunities for the development of advanced hydrogels for postoperative tissue adhesions management.


Assuntos
Dendrímeros , Hidrogéis , Meloxicam , Nylons , Ácido Poliglutâmico , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia , Ácido Poliglutâmico/análogos & derivados , Nylons/química , Aderências Teciduais/prevenção & controle , Dendrímeros/química , Dendrímeros/farmacologia , Meloxicam/química , Meloxicam/farmacologia , Meloxicam/administração & dosagem , Camundongos , Inflamação/prevenção & controle , Inflamação/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fibrinólise/efeitos dos fármacos , Complicações Pós-Operatórias/prevenção & controle , Tamanho da Partícula , Injeções , Portadores de Fármacos/química
18.
Chem Commun (Camb) ; 60(49): 6256-6259, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38768325

RESUMO

Dendritic DNA molecules, referred to as DNA dendrons, consist of multiple covalently linked strands and are expected to improve the cellular uptake and potency of therapeutic oligonucleotides because of their multivalency. In this study, we developed an efficient synthetic method for producing DNA dendrons using strain-promoted azide-alkyne cycloaddition. Integration of the antitumor aptamer AS1411 into DNA dendrons enhanced cellular uptake and antiproliferative activity in cancer cells. These findings demonstrate that the incorporation of multivalent aptamers into DNA dendrons can effectively boost their therapeutic effects.


Assuntos
Aptâmeros de Nucleotídeos , Proliferação de Células , Dendrímeros , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Humanos , Dendrímeros/química , Dendrímeros/farmacologia , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Azidas/química , Alcinos/química , Alcinos/farmacologia , Reação de Cicloadição , Linhagem Celular Tumoral , Oligodesoxirribonucleotídeos
19.
Acta Biomater ; 183: 252-263, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38801869

RESUMO

The combination of ferroptosis, cuproptosis, and chemodynamic therapy (CDT) would be a potential strategy for tumor diagnosis and enhanced treatment. However, the therapeutic effect was severely limited by the lack of specific delivery of catalytic ions and the low Fenton reaction efficiency in tumor microenvironment (TME) with excess glutathione, limited acidity and insufficient endogenous hydrogen peroxide. In this work, p-carboxybenzenesulfonamide (BS), a carbonic anhydrase IX (CA IX) inhibitor, was modified on the surface of generation-5 poly(amidoamine) dendrimer to load copper peroxide nanoparticles, which were complexed with iron (Fe)-tannic acid (TF) networks for targeted magnetic resonance (MR) imaging and enhanced ferroptosis/cuproptosis/CDT by regulating TME. The formed CuO2@G5-BS/TF nanocomplexes with an average size of 39.4 nm could be specifically accumulated at tumor site and effectively internalized by metastatic 4T1 cells via the specific interaction between BS and CA IX over-expressed on tumor cells. Meanwhile, the inhibition of CA IX activity could not only decrease the intracellular pH to accelerate Fe3+/Cu2+ release, H2O2 self-supply and Fenton reaction, but also suppress tumor metastasis by alleviating the extracellular acidity in TME. Moreover, the reduction of Fe3+/Cu2+ by intracellular glutathione (GSH) could further amplify ROS generation and enhance CDT efficacy, and the GSH depletion could in turn inhibit GPX-4 mediated antioxidant reaction to induce ferroptosis, resulting in effective therapeutic efficacy. In vivo experimental results demonstrated that CuO2@G5-BS/TF could provide better tumor MR imaging, effectively inhibit the growth and metastasis of 4T1 breast tumors, and be metabolized without significant systemic toxicity. Thus, CuO2@G5-BS/TF nanocomplexes provided a new approach for targeted MR imaging and enhanced ferroptosis/cuproptosis/CDT of triple-negative breast cancer. STATEMENT OF SIGNIFICANCE: Taking the advantage of dendrimer and metal-phenolic system, stable CuO2@G5-BS/TF nanocomplexes with an average size of 39.4 nm were synthesized to efficiently load Fe3+ and CuO2 nanoparticles for TNBC treatment and MR imaging. CuO2@G5-BS/TF nanocomplexes could target tumor cells overexpressing CAIX via the specific binding with BS, and the inhibition of CAIX activity could not only decrease the intracellular pH to accelerate Fe3+/Cu2+ release, H2O2 self-supply and Fenton reaction, but also suppress tumor metastasis by alleviating the extracellular acidity. The reduction of Fe3+/Cu2+ by intracellular GSH could further amplify ·OH generation, and the GSH depletion could in turn inhibit GPX-4 mediated antioxidant reaction to induce ferroptosis, resulting in effective therapeutic efficacy by enhanced ferroptosis/cuproptosis/CDT via tumor microenvironment regulation.


Assuntos
Cobre , Dendrímeros , Ferroptose , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Animais , Dendrímeros/química , Dendrímeros/farmacologia , Cobre/química , Cobre/farmacologia , Camundongos , Linhagem Celular Tumoral , Feminino , Nanopartículas/química , Humanos
20.
Macromol Biosci ; 24(6): e2300513, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38444226

RESUMO

Electrospun polymer nanofibers, due to high surface area-to-volume ratio, high porosity, good mechanical strength, and ease of functionalization, appear as promising multifunctional materials for biomedical applications. Thanks to their unidirectional structure, imitating the extracellular matrix (ECM), they can be used as scaffolds for cell adhesion and proliferation. In addition, the incorporation of active groups inside nanofiber can give properties for bactericides. The proposed nanomats incorporate nanoparticles templated within the electrospun nanofibers that prevent infections and stimulate tissue regeneration. The generated hybrid electrospun nanofibers are composed of a copolymer of L-lactide-block-ε-caprolactone (PL-b-CL), 70:30, blended with homopolymer polyvinylpyrrolidone (PVP) and gold (Au) nanoparticles. A low cytotoxicity and slightly increased immunoreactivity, stimulated by the nanomat, are observed. Moreover, the decoration of the hybrid nanomat with dendronized silver nanoparticles (Dend-Ag) improves their antibacterial activity against antibiotic-resistant Pseudomonas aeruginosa. The use of Dend-Ag for decorating offers several functional effects; namely, it enhances the antibacterial properties of the produced nanomats and induces a significant increase within macrophages' cytotoxicity. The unidirectional nanostructures of the generated hybrid nanomats demonstrate unique collective physio-chemical and biological properties suitable for a wide range of biomedical applications. Here, the antibacterial properties facilitate an optimal environment, contributing to accelerated wound healing.


Assuntos
Bandagens , Ouro , Nanopartículas Metálicas , Pseudomonas aeruginosa , Prata , Cicatrização , Prata/química , Prata/farmacologia , Cicatrização/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Alicerces Teciduais/química , Dendrímeros/química , Dendrímeros/farmacologia , Animais , Camundongos , Nanofibras/química , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Poliésteres/química , Poliésteres/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA