Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 120(4): 603-615, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28981570

RESUMO

Background and Aims: Studies of phenotypic plasticity in plants have mainly focused on (1) the effect of environmental variation on whole-plant traits related to the number of modules rather than on (2) the phenotypic consequences of environmental variation in traits of individual modules. Since environmental and developmental factors can produce changes in traits related to the mating system, this study used the second approach to investigate whether within-individual variation in herkogamy-related traits is affected by the environment during plant development in two populations of Datura stramonium , an annual herb with a hypothesized persistent mixed mating system, and to determine which morphological traits may promote self-fertilization. Methods: Full-sib families of two Mexican populations of D. stramonium , with contrasting ecological histories, were grown under low, mid and high nutrient availability to investigate the effects of genetic, environmental and within-plant flower position on flower size, corolla, stamen and pistil lengths, and herkogamy. Key Results: Populations showed differences in familial variation, plasticity and familial differences in plasticity in most floral traits analysed. In one population (Ticumán), the effect of flower position on trait variation varied among families, whereas in the other (Pedregal) the effect of flower position interacted with the nutrient environment. Flower size varied with the position of flowers, but in the opposite direction between populations in low nutrients; a systematic within-plant trend of reduction in flower size, pistil length and herkogamy with flower position increased the probability of self-fertilization in the Pedregal population. Conclusions: Besides genetic variation in floral traits between and within populations, environmental variation affects phenotypic floral trait values at the whole-plant level, as well as among flower positions. The interaction between flower position and nutrient environment can affect the plant's mating system, and this differs between populations. Thus, reductions in herkogamy with flower positions may be expected in environments with either low pollinator abundance or low nutrients.


Assuntos
Datura stramonium/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Datura stramonium/anatomia & histologia , Datura stramonium/fisiologia , Meio Ambiente , Flores/anatomia & histologia , Flores/fisiologia , Fenótipo , Polinização/fisiologia , Reprodução/fisiologia , Autofertilização/fisiologia
2.
J Evol Biol ; 29(3): 483-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26411698

RESUMO

Negative frequency-dependent selection (FDS), where rare genotypes are favoured by selection, is commonly invoked as a mechanism explaining the maintenance of genetic variation in plant defences. However, empirical tests of FDS in plant-herbivore interactions are lacking. We evaluated whether the oviposition preference of the specialist herbivore Lema daturaphila is a mechanism through which this herbivore can exert FDS on its host plant Datura stramonium. The frequency of contrasting resistance-tolerance strategies was manipulated within experimental plots, and the plants were exposed to a similar initial density of their natural herbivore. Herbivore oviposition preference and final density, as well as plant damage and seed production, were estimated. Overall, we found that the high-resistant-low-tolerant genotypes produced four times more seeds when common than when rare, whereas the high-tolerant-low-resistant genotypes achieved twice its fitness when rare than when common. This pattern was the result of differential oviposition preferences. In addition, when the high-resistant-low-tolerant genotypes were common, there was a three-fold decreased in herbivore final density which led to a decrease in damage level by 10%. Thus, in our experiment positive FDS seems to favour resistance over tolerance. We discuss how this result would change if the extent of herbivore local adaptation and damage modify the pattern of positive FDS acting on resistance and the optimal allocation to tolerance.


Assuntos
Datura stramonium/fisiologia , Herbivoria , Seleção Genética/fisiologia , Adaptação Fisiológica , Animais , Besouros , Feminino , México , Oviposição
3.
PLoS One ; 9(7): e102478, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051169

RESUMO

Selection exerted by herbivores is a major force driving the evolution of plant defensive characters such as leaf trichomes or secondary metabolites. However, plant defense expression is highly variable among populations and identifying the sources of this variation remains a major challenge. Plant populations are often distributed across broad geographic ranges and are exposed to different herbivore communities, ranging from generalists (that feed on diverse plant species) to specialists (that feed on a restricted group of plants). We studied eight populations of the plant Datura stramonium usually eaten by specialist or generalist herbivores, in order to examine whether the pattern of phenotypic selection on secondary compounds (atropine and scopolamine) and a physical defense (trichome density) can explain geographic variation in these traits. Following co-evolutionary theory, we evaluated whether a more derived alkaloid (scopolamine) confers higher fitness benefits than its precursor (atropine), and whether this effect differs between specialist and generalist herbivores. Our results showed consistent directional selection in almost all populations and herbivores to reduce the concentration of atropine. The most derived alkaloid (scopolamine) was favored in only one of the populations, which is dominated by a generalist herbivore. In general, the patterns of selection support the existence of a selection mosaic and accounts for the positive correlation observed between atropine concentration and plant damage by herbivores recorded in previous studies.


Assuntos
Datura stramonium/fisiologia , Animais , Atropina/metabolismo , Datura stramonium/anatomia & histologia , Herbivoria , México , Fenótipo , Dispersão Vegetal , Seleção Genética , Tricomas/anatomia & histologia , Tricomas/fisiologia
4.
Evolution ; 58(8): 1696-704, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15446424

RESUMO

In this study we examine the hypothesis that divergent natural selection produces genetic differentiation among populations in plant defensive strategies (tolerance and resistance) generating adaptive variation in defensive traits against herbivory. Controlled genetic material (paternal half-sib families) from two populations of the annual Datura stramonium genetically differentiated in tolerance and resistance to herbivory were used. This set of paternal half-sib families was planted at both sites of origin and the pattern of genotypic selection acting on tolerance and resistance was determined, as well as the presence and variation in the magnitude of allocational costs of tolerance. Selection analyses support the adaptive differentiation hypothesis. Tolerance was favored at the site with higher average level of tolerance, and resistance was favored at the site with higher average level of resistance. The presence of significant environmentally dependent costs of tolerance was in agreement with site variation in the adaptive value of tolerance. Our results support the expectation that environmentally dependent costs of plant defensive strategies can generate differences among populations in the evolutionary trajectory of defensive traits and promote the existence of a selection mosaic. The pattern of contrasting selection on tolerance suggests that, in some populations of D. stramonium, tolerance may alter the strength of reciprocal coevolution between plant resistance and natural enemies.


Assuntos
Adaptação Biológica , Datura stramonium/fisiologia , Ecossistema , Variação Genética , Modelos Genéticos , Seleção Genética , Animais , Datura stramonium/genética , Cadeia Alimentar , Insetos/fisiologia , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA