RESUMO
The taxon Trypanosoma cruzi, causative agent of Chagas disease, is composed of several discrete typing units (DTUs) named TcI-TcVI, and Tcbat. The history of the taxon T. cruzi is known, even though several controversial aspects remain as the relationships between TcIII and TcIV. We analyzed cloned T. cruzi stocks pertaining to the seven DTUs by filter hybridization tests of PCR amplicons from minicircle variable regions and kinetoplast DNA probes. Minicircle DNA blots from the cloned stocks and filter hybridization with one TcI, one TcII, one TcV, one TcVI, three TcIII, one TcIV from North America and one TcIV kinetoplast DNA probes from South America revealed minicircle variable region cross-reaction in some T. cruzi DTUs probed. TcIII was heterogeneous in minicircle class composition, even though two TcIII probes revealed that a small fraction of minicircles cross-hybridized with the minicircles from the TcIII, TcV and TcVI DTUs. The minicircles of TcIV from North America cross-reacted only with TcIV from North America but not with TcIV stocks from Brazil and Bolivia. The results on minicircle cross-hybridizations are discussed in the context of RNA editing, mitochondrial function in T. cruzi DTUs.
Assuntos
DNA de Cinetoplasto/genética , Variação Genética , Genótipo , RNA de Protozoário/genética , Trypanosoma cruzi/genética , Animais , Doença de Chagas/parasitologia , Clonagem Molecular , DNA de Cinetoplasto/classificação , Humanos , Tipagem Molecular , América do Norte , Hibridização de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase , América do Sul , Trypanosoma cruzi/classificação , Trypanosoma cruzi/isolamento & purificaçãoRESUMO
Little is known on the role played by Neotropical wild carnivores in the Trypanosoma cruzi transmission cycles. We investigated T. cruzi infection in wild carnivores from three sites in Brazil through parasitological and serological tests. The seven carnivore species examined were infected by T. cruzi, but high parasitemias detectable by hemoculture were found only in two Procyonidae species. Genotyping by Mini-exon gene, PCR-RFLP (1f8/Akw21I) and kDNA genomic targets revealed that the raccoon (Procyon cancrivorus) harbored TcI and the coatis (Nasua nasua) harbored TcI, TcII, TcIII-IV and Trypanosoma rangeli, in single and mixed infections, besides four T. cruzi isolates that displayed odd band patterns in the Mini-exon assay. These findings corroborate the coati can be a bioaccumulator of T. cruzi Discrete Typing Units (DTU) and may act as a transmission hub, a connection point joining sylvatic transmission cycles within terrestrial and arboreal mammals and vectors. Also, the odd band patterns observed in coatis' isolates reinforce that T. cruzi diversity might be much higher than currently acknowledged. Additionally, we assembled our data with T. cruzi infection on Neotropical carnivores' literature records to provide a comprehensive analysis of the infection patterns among distinct carnivore species, especially considering their ecological traits and phylogeny. Altogether, fifteen Neotropical carnivore species were found naturally infected by T. cruzi. Species diet was associated with T. cruzi infection rates, supporting the hypothesis that predator-prey links are important mechanisms for T. cruzi maintenance and dispersion in the wild. Distinct T. cruzi infection patterns across carnivore species and study sites were notable. Musteloidea species consistently exhibit high parasitemias in different studies which indicate their high infectivity potential. Mesocarnivores that feed on both invertebrates and mammals, including the coati, a host that can be bioaccumulator of T. cruzi DTU's, seem to take place at the top of the T. cruzi transmission chain.