Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.453
Filtrar
1.
Acta Crystallogr D Struct Biol ; 80(Pt 10): 744-764, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39361357

RESUMO

A group of three deep-learning tools, referred to collectively as CHiMP (Crystal Hits in My Plate), were created for analysis of micrographs of protein crystallization experiments at the Diamond Light Source (DLS) synchrotron, UK. The first tool, a classification network, assigns images into categories relating to experimental outcomes. The other two tools are networks that perform both object detection and instance segmentation, resulting in masks of individual crystals in the first case and masks of crystallization droplets in addition to crystals in the second case, allowing the positions and sizes of these entities to be recorded. The creation of these tools used transfer learning, where weights from a pre-trained deep-learning network were used as a starting point and repurposed by further training on a relatively small set of data. Two of the tools are now integrated at the VMXi macromolecular crystallography beamline at DLS, where they have the potential to absolve the need for any user input, both for monitoring crystallization experiments and for triggering in situ data collections. The third is being integrated into the XChem fragment-based drug-discovery screening platform, also at DLS, to allow the automatic targeting of acoustic compound dispensing into crystallization droplets.


Assuntos
Cristalização , Aprendizado Profundo , Cristalização/métodos , Cristalografia por Raios X/métodos , Proteínas/química , Processamento de Imagem Assistida por Computador/métodos , Síncrotrons , Automação , Software
2.
Methods Enzymol ; 704: 27-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39300651

RESUMO

Rieske non-heme iron oxygenases are ubiquitously expressed in prokaryotes. These enzymes catalyze a wide variety of reactions, including cis-dihydroxylation, mono-hydroxylation, sulfoxidation, and demethylation. They contain a Rieske-type [2Fe-2S] cluster and an active site with a mono-nuclear iron bound to a 2-His carboxylate triad. Naphthalene 1,2 dioxygenase, a representative of this family, catalyzes the conversion of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. This transformation requires naphthalene, two electrons, and an oxygen molecule. The first structure of the terminal oxygenase component of a Rieske non-heme iron oxygenase to be determined was naphthalene 1,2 dioxygenase (NDO-O). In this article, we describe in detail the methods used to recombinantly express and purify NDO-O in rich and minimal salts media, the crystallization of NDO-O for structure determination by X-ray crystallography, the challenges faced, and the methods used for the preparation of enzyme ligand complexes. The methods used here resulted in the determination of several NDO-O complexes with aromatic substrates, nitric oxide, oxygen molecule, and products, leading to an initial understanding of the mechanism of enzyme catalysis and the molecular determinants of the regio- and stereo-specificity of this class of enzymes.


Assuntos
Dioxigenases , Dioxigenases/química , Dioxigenases/metabolismo , Dioxigenases/genética , Cristalografia por Raios X/métodos , Naftalenos/química , Naftalenos/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Domínio Catalítico , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Cristalização/métodos , Modelos Moleculares , Complexos Multienzimáticos
3.
Methods Enzymol ; 704: 39-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39300656

RESUMO

Non-heme iron oxygenases constitute a versatile enzyme family that is crucial for incorporating molecular oxygen into diverse biomolecules. Despite their importance, only a limited number of these enzymes have been structurally and functionally characterized. Surprisingly, there remains a significant gap in understanding how these enzymes utilize a typical architecture and reaction mechanism to catalyze a wide range of reactions. Improving our understanding of these catalysts holds promise for advancing both fundamental enzymology and practical applications. This chapter aims to outline methods for heterologous expression, enzyme preparation, in vitro enzyme assays, and crystallization of biphenyl dioxygenase, phthalate dioxygenase and terephthalate dioxygenase. These enzymes catalyze the dihydroxylation of biphenyl, phthalate and terephthalate molecules, serving as a model for functional and structural analysis of other non-heme iron oxygenases.


Assuntos
Compostos de Bifenilo , Cristalização , Ácidos Ftálicos , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Compostos de Bifenilo/química , Cinética , Cristalização/métodos , Dioxigenases/química , Dioxigenases/metabolismo , Dioxigenases/genética , Ferro/química , Ferro/metabolismo , Cristalografia por Raios X/métodos , Ensaios Enzimáticos/métodos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Oxigenases
4.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39273448

RESUMO

In view of the current problems of slow crystallization rate, varying grain sizes, complex process conditions, and low safety in the preparation of CL-20/TNT cocrystal explosives in the laboratory, an opposite spray crystallization method is provided to quickly prepare ultrafine explosive cocrystal particles. CL-20/TNT cocrystal explosive was prepared using this method, and the obtained cocrystal samples were characterized by electron microscopy morphology, differential thermal analysis, infrared spectroscopy, and X-ray diffraction analysis. The effects of spray temperature, feed ratio, and preparation method on the formation of explosive cocrystal were studied, and the process conditions of the pneumatic atomization spray crystallization method were optimized. The crystal plane binding energy and molecular interaction forces between CL-20 and TNT were obtained through molecular dynamic simulation, and the optimal binding crystal plane and cocrystal mechanism were analyzed. The theoretical calculation temperature of the binding energy was preliminarily explored in relation to the preparation process temperature of cocrystal explosives. The mechanical sensitivity of ultrafine CL-20/TNT cocrystal samples was tested. The results showed that choosing acetone as the cosolvent, a spraying temperature of 30 °C, and a feeding ratio of 1:1 was beneficial for the formation and growth of cocrystal. The prepared CL-20/TNT cocrystal has a particle size of approximately 10 µm. The grain size is small, and the crystallization rate is fast. The impact and friction sensitivity of ultrafine CL-20/TNT cocrystal samples were significantly reduced. The experimental process conditions are simple and easy to control, and the safety of the preparation process is high, providing certain technical support for the preparation of high-quality cocrystal explosives.


Assuntos
Cristalização , Substâncias Explosivas , Simulação de Dinâmica Molecular , Trinitrotolueno , Cristalização/métodos , Substâncias Explosivas/química , Trinitrotolueno/química , Difração de Raios X , Temperatura
5.
AAPS PharmSciTech ; 25(7): 219, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39299994

RESUMO

The isothermal crystallization process of felodipine has been investigated using the time-domain Nuclear Magnetic Resonance (NMR) method for amorphous bulk and ground samples. The obtained induction and crystallization times were then used to construct the time-temperature-transformation (TTT) diagram, both above and below the glass transition temperature (Tg). The Nose temperature was found equal to 363 K. Furthermore, the dynamics of crystalline and amorphous felodipine were compared across varying temperatures. Molecular dynamics simulations were also employed to explore the hydrogen-bond interactions and dynamic properties of both systems.


Assuntos
Cristalização , Felodipino , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Temperatura , Felodipino/química , Cristalização/métodos , Espectroscopia de Ressonância Magnética/métodos , Temperatura de Transição
6.
AAPS PharmSciTech ; 25(7): 210, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39242368

RESUMO

Torsemide is a long acting pyridine sulfonylurea diuretic. Torsemide hydrochloride is widely used now, there are only a few organic acid salts reported. Cocrystallization with organic acids is an effective way to improve its solubility. Here, we reported maleate and phthalate of torsemide, in which the organic acid lost a proton transferring to the pyridine of torsemide, and torsemide interacted with organic acid through N+ - H⋯O- hydrogen bond to form salts crystal. Surprisingly, maleate showed a clear "spring" pattern in apparent solubility, whereas phthalate had a "spring-parachute" effect. Both crystalline salts kept a higher solubility than torsemide without falling. The "spring-parachute" effect of crystalline salts promoted rapid dissolution of torsemide and kept a high concentration, thereby increasing its bioavailability.


Assuntos
Cristalização , Sais , Solubilidade , Torasemida , Torasemida/química , Cristalização/métodos , Sais/química , Ligação de Hidrogênio , Diuréticos/química , Maleatos/química , Disponibilidade Biológica
7.
Mol Pharm ; 21(9): 4272-4284, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39135353

RESUMO

There has been a significant volume of work investigating the design and synthesis of new crystalline multicomponent systems via examining complementary functional groups that can reliably interact through the formation of noncovalent bonds, such as hydrogen bonds (H-bonds). Crystalline multicomponent molecular adducts formed using this approach, such as cocrystals, salts, and eutectics, have emerged as drug product intermediates that can lead to effective drug property modifications. Recent advancement in the production for these multicomponent molecular adducts has moved from batch techniques that rely upon intensive solvent use to those that are solvent-free, continuous, and industry-ready, such as reactive extrusion. In this study, a novel eutectic system was found when processing albendazole and maleic acid at a 1:2 molar ratio and successfully prepared using mechanochemical methods including liquid-assisted grinding and hot-melt reactive extrusion. The produced eutectic was characterized to exhibit a 100 °C reduction in melting temperature and enhanced dissolution performance (>12-fold increase at 2 h point), when compared to the native drug compound. To remove handling of the eutectic as a formulation intermediate, an end-to-end continuous-manufacturing-ready process enables feeding of the raw parent reagents in their respective natural forms along with a chosen polymeric excipient, Eudragit EPO. The formation of the eutectic was confirmed to have taken place in situ in the presence of the polymer, with the reaction yield determined using a multivariate calibration model constructed by combining spectroscopic analysis with partial least-squares regression modeling. The ternary extrudates exhibited a dissolution profile similar to that of the 1:2 prepared eutectic, suggesting a physical distribution (or suspension) of the in situ synthesized eutectic contents within the polymeric matrix.


Assuntos
Polímeros , Solubilidade , Análise dos Mínimos Quadrados , Polímeros/química , Química Farmacêutica/métodos , Maleatos/química , Composição de Medicamentos/métodos , Temperatura Alta , Ligação de Hidrogênio , Tecnologia de Extrusão por Fusão a Quente/métodos , Cristalização/métodos
8.
Acta Crystallogr D Struct Biol ; 80(Pt 9): 661-674, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207897

RESUMO

A key prerequisite for the successful application of protein crystallography in drug discovery is to establish a robust crystallization system for a new drug-target protein fast enough to deliver crystal structures when the first inhibitors have been identified in the hit-finding campaign or, at the latest, in the subsequent hit-to-lead process. The first crucial step towards generating well folded proteins with a high likelihood of crystallizing is the identification of suitable truncation variants of the target protein. In some cases an optimal length variant alone is not sufficient to support crystallization and additional surface mutations need to be introduced to obtain suitable crystals. In this contribution, four case studies are presented in which rationally designed surface modifications were key to establishing crystallization conditions for the target proteins (the protein kinases Aurora-C, IRAK4 and BUB1, and the KRAS-SOS1 complex). The design process which led to well diffracting crystals is described and the crystal packing is analysed to understand retrospectively how the specific surface mutations promoted successful crystallization. The presented design approaches are routinely used in our team to support the establishment of robust crystallization systems which enable structure-guided inhibitor optimization for hit-to-lead and lead-optimization projects in pharmaceutical research.


Assuntos
Cristalização , Cristalização/métodos , Cristalografia por Raios X/métodos , Humanos , Descoberta de Drogas/métodos , Mutação , Modelos Moleculares , Proteínas Serina-Treonina Quinases/química
9.
AAPS PharmSciTech ; 25(7): 192, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164485

RESUMO

Lipid-based formulations (LbFs) have demonstrated success in pharmaceutical applications; however, challenges persist in dissolving entire doses of the drug into defined liquid volumes. In this study, the temperature-induced supersaturation method was employed in LbF to address drug loading and pill burden issues. Supersaturated LbFs (super-LbF) were prepared using the temperature-induced supersaturation method, where the drug load is above its equilibrium solubility. Further, the influence of the drug's physicochemical and thermal characteristics on drug loading and their relevance with an apparent degree of supersaturation (aDS) was studied using two model drugs, ibrutinib and enzalutamide. All the prepared LbFs were evaluated in terms of physical stability, dispersion, and solubilization capacity, as well as pharmacokinetic assessments. Drug re-crystallization was observed in the lipid solution on long-term storage at higher aDS values of 2-2.5. Furthermore, high-throughput lipolysis studies demonstrated a significant decrease in drug concentration across all LbFs (regardless of drug loading) due to a decline in the formulation solvation capacity and subsequent generation of in-situ supersaturation. Further, the in vivo results demonstrated comparable pharmacokinetic parameters between conventional LbF and super-LbF. The short duration of the thermodynamic metastable state limits the potential absorption benefits. However, super-LbFs of Ibr and Enz showed superior profiles, with 1.7-fold and 5.2-fold increased drug exposure compared to their respective crystalline suspensions. In summary, this study emphasizes the potential of temperature-induced supersaturation in LbF for enhancing drug loading and highlights the intricate interplay between drug properties, formulation characteristics, and in vivo performance.


Assuntos
Adenina , Benzamidas , Química Farmacêutica , Lipídeos , Nitrilas , Feniltioidantoína , Piperidinas , Solubilidade , Temperatura , Nitrilas/química , Nitrilas/administração & dosagem , Piperidinas/química , Piperidinas/administração & dosagem , Piperidinas/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Adenina/análogos & derivados , Adenina/química , Adenina/administração & dosagem , Feniltioidantoína/farmacocinética , Feniltioidantoína/administração & dosagem , Lipídeos/química , Animais , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Masculino , Pirimidinas/farmacocinética , Pirimidinas/química , Pirimidinas/administração & dosagem , Estabilidade de Medicamentos , Cristalização/métodos , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/administração & dosagem , Lipólise/efeitos dos fármacos , Ratos
10.
Adv Sci (Weinh) ; 11(36): e2403173, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39083316

RESUMO

Photonic crystals are a new class of optical microstructure materials characterized by a dielectric constant that varies periodically with space and features a photonic bandgap. Inspired by natural photonic crystals such as butterfly scales, a series of artificial photonic crystals are developed for use in integrated photonic platforms, biosensing, communication, and other fields. Among them, colloidal photonic crystals (CPCs) have gained widespread attention due to their excellent optical properties and advantages, such as ease of preparation and functionalization. This work reviews the classification and self-assembly principles of CPCs, details some of the latest biomedical applications of large-area, high-quality CPCs prepared using advanced self-assembly methods, summarizes the existing challenges in CPC construction and application, and anticipates future development directions and optimization strategy. With further advancements, CPCs are expected to play a more critical role in biosensors, drug delivery, cell research, and other fields, bringing significant benefits to biomedical research and clinical practice.


Assuntos
Técnicas Biossensoriais , Coloides , Fótons , Coloides/química , Técnicas Biossensoriais/métodos , Cristalização/métodos , Cor , Humanos , Óptica e Fotônica/métodos , Animais
11.
Acta Crystallogr D Struct Biol ; 80(Pt 8): 620-628, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39052318

RESUMO

Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CLpro, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures.


Assuntos
Proteases 3C de Coronavírus , Cristalografia por Raios X/métodos , Proteases 3C de Coronavírus/química , SARS-CoV-2/química , Cristalização/métodos , Temperatura , Modelos Moleculares , Conformação Proteica , Humanos , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Plantas
12.
Mol Pharm ; 21(8): 4024-4037, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38958508

RESUMO

Crystalline suspensions of monoclonal antibodies (mAbs) have great potential to improve drug substance isolation and purification on a large scale and to be used for drug delivery via high-concentration formulations. Crystalline mAb suspensions are expected to have enhanced chemical and physical properties relative to mAb solutions delivered intravenously, making them attractive candidates for subcutaneous delivery. In contrast to small molecules, the development of protein crystalline suspensions is not a widely used approach in the pharmaceutical industry. This is mainly due to the challenges in finding crystalline hits and the suboptimal physical properties of the resulting crystallites when hits are found. Modern advances in instrumentation and increased knowledge of mAb crystallization have, however, resulted in higher probabilities of discovering crystal forms and improving their particle properties and characterization. In this regard, physical, analytical characterization plays a central role in the initial steps of understanding and later optimizing the crystallization of mAbs and requires careful selection of the appropriate tools. This contribution describes a novel crystal structure of the antibody pembrolizumab and demonstrates the usefulness of small-angle X-ray scattering (SAXS) for characterizing its crystalline suspensions. It illustrates the advantages of SAXS when used to (i) confirm crystallinity and crystal phase of crystallites produced in batch mode; (ii) confirm crystallinity under various conditions and detect variations in crystal phases, enabling fine-tuning of the crystallizations for phase control across multiple batches; (iii) monitor the physical response and stability of the crystallites in suspension with regard to filtration and washing; and (iv) monitor the physical stability of the crystallites upon drying. Overall, this work highlights how SAXS is an essential tool for mAb crystallization characterization.


Assuntos
Anticorpos Monoclonais , Cristalização , Espalhamento a Baixo Ângulo , Difração de Raios X , Cristalização/métodos , Anticorpos Monoclonais/química , Difração de Raios X/métodos
13.
AAPS PharmSciTech ; 25(5): 127, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844724

RESUMO

The success of obtaining solid dispersions for solubility improvement invariably depends on the miscibility of the drug and polymeric carriers. This study aimed to categorize and select polymeric carriers via the classical group contribution method using the multivariate analysis of the calculated solubility parameter of RX-HCl. The total, partial, and derivate parameters for RX-HCl were calculated. The data were compared with the results of excipients (N = 36), and a hierarchical clustering analysis was further performed. Solid dispersions of selected polymers in different drug loads were produced using solvent casting and characterized via X-ray diffraction, infrared spectroscopy and scanning electron microscopy. RX-HCl presented a Hansen solubility parameter (HSP) of 23.52 MPa1/2. The exploratory analysis of HSP and relative energy difference (RED) elicited a classification for miscible (n = 11), partially miscible (n = 15), and immiscible (n = 10) combinations. The experimental validation followed by a principal component regression exhibited a significant correlation between the crystallinity reduction and calculated parameters, whereas the spectroscopic evaluation highlighted the hydrogen-bonding contribution towards amorphization. The systematic approach presented a high discrimination ability, contributing to optimal excipient selection for the obtention of solid solutions of RX-HCl.


Assuntos
Química Farmacêutica , Excipientes , Polímeros , Cloridrato de Raloxifeno , Solubilidade , Difração de Raios X , Polímeros/química , Excipientes/química , Cloridrato de Raloxifeno/química , Análise Multivariada , Difração de Raios X/métodos , Química Farmacêutica/métodos , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Microscopia Eletrônica de Varredura/métodos , Ligação de Hidrogênio , Cristalização/métodos
14.
AAPS PharmSciTech ; 25(5): 133, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862767

RESUMO

Nifedipine (NIF) is a dihydropyridine calcium channel blocker primarily used to treat conditions such as hypertension and angina. However, its low solubility and low bioavailability limit its effectiveness in clinical practice. Here, we developed a cocrystal prediction model based on Graph Neural Networks (CocrystalGNN) for the screening of cocrystals with NIF. And scoring 50 coformers using CocrystalGNN. To validate the reliability of the model, we used another prediction method, Molecular Electrostatic Potential Surface (MEPS), to verify the prediction results. Subsequently, we performed a second validation using experiments. The results indicate that our model achieved high performance. Ultimately, cocrystals of NIF were successfully obtained and all cocrystals exhibited better solubility and dissolution characteristics compared to the parent drug. This study lays a solid foundation for combining virtual prediction with experimental screening to discover novel water-insoluble drug cocrystals.


Assuntos
Bloqueadores dos Canais de Cálcio , Cristalização , Redes Neurais de Computação , Nifedipino , Solubilidade , Eletricidade Estática , Nifedipino/química , Cristalização/métodos , Bloqueadores dos Canais de Cálcio/química
15.
J Vis Exp ; (207)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829127

RESUMO

In recent years, solution processes have gained considerable traction as a cost-effective and scalable method to produce high-performance thermoelectric materials. The process entails a series of critical steps: synthesis, purification, thermal treatments, and consolidation, each playing a pivotal role in determining performance, stability, and reproducibility. We have noticed a need for more comprehensive details for each of the described steps in most published works. Recognizing the significance of detailed synthetic protocols, we describe here the approach used to synthesize and characterize one of the highest-performing polycrystalline p-type SnSe. In particular, we report the synthesis of SnSe particles in water and the subsequent surface treatment with CdSe molecular complexes that yields CdSe-SnSe nanocomposites upon consolidation. Moreover, the surface treatment inhibits grain growth through Zenner pinning of secondary phase CdSe nanoparticles and enhances defect formation at different length scales. The enhanced complexity in the CdSe-SnSe nanocomposite microstructure with respect to SnSe promotes phonon scattering and thereby significantly reduces the thermal conductivity. Such surface engineering provides opportunities in solution processing for introducing and controlling defects, making it possible to optimize the transport properties and attain a high thermoelectric figure of merit.


Assuntos
Compostos de Cádmio , Compostos de Selênio , Condutividade Térmica , Compostos de Selênio/química , Compostos de Cádmio/química , Estanho/química , Soluções/química , Propriedades de Superfície , Cristalização/métodos
16.
Methods Enzymol ; 699: 25-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942506

RESUMO

Magnesium ions (Mg2+) are crucial in class II terpene cyclases that utilize substrates with diphosphate groups. Interestingly, these enzymes catalyze reactions without cleaving the diphosphate group, instead initiating the reaction through protonation. In our recent research, we discovered a novel class II sesquiterpene cyclase in Streptomyces showdoensis. Notably, we determined its crystal structure and identified Mg2+ within its active site. This finding has shed light on the previously elusive question of Mg2+ binding in class II terpene cyclases. In this chapter, we outline our methods for discovering this novel enzyme, including steps for its purification, crystallization, and kinetic analysis.


Assuntos
Magnésio , Sesquiterpenos , Streptomyces , Magnésio/metabolismo , Magnésio/química , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Streptomyces/enzimologia , Sítios de Ligação , Cinética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X/métodos , Relação Estrutura-Atividade , Cristalização/métodos , Carbono-Carbono Liases
17.
Mol Pharm ; 21(7): 3375-3382, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885189

RESUMO

Recent work has shown that an amorphous drug-polymer salt can be highly stable against crystallization under hot and humid storage conditions (e.g., 40 °C/75% RH) and provide fast release and that these advantages depend on the degree of salt formation. Here, we investigate the salt formation between the basic drug lumefantrine (LMF) and several acidic polymers: poly(acrylic acid) (PAA), hypromellose phthalate (HPMCP), hypromellose acetate succinate (HPMCAS), cellulose acetate phthalate (CAP), Eudragit L100, and Eudragit L100-55. Salt formation was performed by "slurry synthesis" where dry components were mixed at room temperature in the presence of a small quantity of an organic solvent, which was subsequently removed. This method achieved more complete salt formation than the conventional methods of hot-melt extrusion and rotary evaporation. The acidic group density of a polymer was determined by nonaqueous titration in the same solvent used for slurry synthesis; the degree of LMF protonation was determined by X-ray photoelectron spectroscopy. The polymers studied show very different abilities to protonate LMF when compared at a common drug loading, following the order PAA > (HPMCP ∼ CAP ∼ L100 ∼ L100-55) > HPMCAS, but the difference largely disappears when the degree of protonation is plotted against the concentration of the available acidic groups for reaction. This indicates that the extent of salt formation is mainly controlled by the acidic group density and is less sensitive to the polymer architecture. Our results are relevant for selecting the optimal polymer to control the degree of ionization in amorphous solid dispersions.


Assuntos
Polímeros , Polímeros/química , Metilcelulose/química , Metilcelulose/análogos & derivados , Cristalização/métodos , Celulose/química , Celulose/análogos & derivados , Resinas Acrílicas/química , Sais/química , Derivados da Hipromelose/química , Solubilidade
18.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714634

RESUMO

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Assuntos
Cristalização , Griseofulvina , Polímeros , Temperatura de Transição , Griseofulvina/química , Cristalização/métodos , Polímeros/química , Estabilidade de Medicamentos , Ligação de Hidrogênio , Polivinil/química , Polietilenoglicóis/química , Povidona/química , Vidro/química
19.
AAPS PharmSciTech ; 25(5): 114, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750299

RESUMO

There is a growing focus on solid-state degradation, especially for its relevance in understanding interactions with excipients. Performing a solid-state degradation of Venetoclax (VEN), we delve into VEN's stability in different solid-state oxidative stress conditions, utilizing Peroxydone™ complex and urea peroxide (UHP). The investigation extends beyond traditional forced degradation scenarios, providing insights into VEN's behavior over 32 h, considering temperature and crystallinity conditions. Distinct behaviors emerge in the cases of Peroxydone™ complex and UHP. The partially crystalline (PC-VEN) form proves more stable with Peroxydone™, while the amorphous form (A-VEN) shows enhanced stability with UHP. N-oxide VEN, a significant degradation product, varies between these cases, reflecting the impact of different oxidative stress conditions. Peroxydone™ complex demonstrates higher reproducibility and stability, making it a promising option for screening impurities in solid-state oxidative stress scenarios. This research not only contributes to the understanding of VEN's stability in solid-state but also aids formulators in anticipating excipient incompatibilities owing to presence of reactive impurities (peroxides) and oxidation in the final dosage form.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Cristalização , Estabilidade de Medicamentos , Excipientes , Oxirredução , Sulfonamidas , Compostos Bicíclicos Heterocíclicos com Pontes/química , Cristalização/métodos , Sulfonamidas/química , Excipientes/química , Estresse Oxidativo , Química Farmacêutica/métodos , Temperatura
20.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38743928

RESUMO

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Assuntos
Cristalização , Água , Cristalização/métodos , Água/química , Cinética , Estabilidade de Medicamentos , Nifedipino/química , Compostos de Vinila/química , Termodinâmica , Pirrolidinas/química , Viscosidade , Química Farmacêutica/métodos , Umidade , Temperatura , Solubilidade , Metilcelulose/química , Metilcelulose/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA