Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 48(8): 1983-91, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26832170

RESUMO

Over the last few years, consistent data have demonstrated that creatine (Cr) supplementation prevents the accumulation of fat in rat liver as well as the progression of fatty liver disease in different situations. Studies have demonstrated that Cr is effective and prevents fatty liver in high-fat and choline-deficient diets and in hepatoma cells in vitro. Because Cr synthesis is responsible for a considerable consumption of hepatic methyl groups, studies have tested the idea that Cr supplementation could modulate phospholipid formation and VLDL secretion. Studies have also demonstrated Cr is able to modulate the expression of key genes related to fatty acid oxidation in hepatocyte cell culture and in rat liver. However, to date, the mechanism by which Cr exerts protective effects against fatty liver is poorly understood. Therefore, the present review aims to summarize the studies involving the therapeutic use of Cr supplementation on fatty liver disease and to explore the mechanisms involved in one-carbon and fatty acid metabolism for the preventive effects of Cr supplementation on fat liver accumulation. Although a small number of studies have been conducted to date, we consider Cr as a new and promising therapeutic strategy to control fat accumulation in the liver as well as the progression of fatty liver disease.


Assuntos
Creatina/uso terapêutico , Suplementos Nutricionais , Fígado Gorduroso/tratamento farmacológico , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Creatina/farmacocinética , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
2.
Amino Acids ; 48(8): 1993-2001, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26872655

RESUMO

Two experiments were performed, in which male Wistar Walker 256 tumor-bearing rats were inoculated with 4 × 10(7) tumor cells subcutaneously and received either creatine (300 mg/kg body weight/day; CR) or placebo (water; PL) supplementation via intragastric gavage. In experiment 1, 50 rats were given PL (n = 22) or CR (n = 22) and a non-supplemented, non-inoculated group served as control CT (n = 6), for 40 days, and the survival rate and tumor mass were assessed. In experiment 2, 25 rats were given CR or PL for 15 days and sacrificed for biochemical analysis. Again, a non-supplemented, non-inoculated group served as control (CT; n = 6). Tumor and muscle creatine kinase (CK) activity and total creatine content, acidosis, inflammatory cytokines, and antioxidant capacity were assessed. Tumor growth was significantly reduced by approximately 30 % in CR when compared with PL (p = 0.03), although the survival rate was not significantly different between CR and PL (p = 0.65). Tumor creatine content tended to be higher in CR than PL (p = 0.096). Tumor CK activity in the cytosolic fraction was higher in CR than PL (p < 0.0001). Blood pCO2 was higher in CT and CR than PL (p = 0.0007 and p = 0.004, respectively). HCO3 was augmented in CT compared to PL (p = 0.03) and CR (p = 0.001). Plasma IL-6 was lower and IL-10 level was higher in CR than PL (p = 0.03 and p = 0.0007, respectively) and TNF-alpha featured a tendency of decrease in CR compared to PL (p = 0.08). Additionally, total antioxidant capacity tended to be lower in CT than PL (p = 0.07). Creatine supplementation was able to slow tumor growth without affecting the overall survival rate, probably due to the re-establishment of the CK-creatine system in cancer cells, leading to attenuation in acidosis, inflammation, and oxidative stress. These findings support the role of creatine as a putative anti-cancer agent as well as help in expanding our knowledge on its potential mechanisms of action in malignancies.


Assuntos
Antineoplásicos/farmacologia , Creatina Quinase Forma MM/metabolismo , Creatina/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Creatina/farmacocinética , Masculino , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , Ratos , Ratos Wistar
3.
Amino Acids ; 48(8): 2015-24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26781304

RESUMO

The purpose of this study was to investigate (1) the impact of tumor growth on homocysteine (Hcy) metabolism, liver oxidative stress and cancer cachexia and, (2) the potential benefits of creatine supplementation in Walker-256 tumor-bearing rats. Three experiments were conducted. First, rats were killed on days 5 (D5), 10 (D10) and 14 (D14) after tumor implantation. In experiment 2, rats were randomly assigned to three groups designated as control (C), tumor-bearing (T) and tumor-bearing supplemented with creatine (TCr). A life span experiment was conducted as the third experiment. Creatine was supplied in drinking water for 21 days (8 g/L) in all cases. Tumor implantation consisted of a suspension of Walker-256 cells (8.0 × 10(7) cells in 0.5 mL of PBS). The progressive increase (P < 0.05) in tumor mass coincided with a progressively lower body weight and higher hepatic oxidative stress; plasma Hcy concentration was 80 % higher (P < 0.05) by 10 days of tumor implantation. Impaired Hcy metabolism was evidenced by decreased hepatic betaine-homocysteine methyltransferase (Bhmt), glycine N-methyltransferase (Gnmt) and cystathionine beta synthase (CBS) gene expression. In contrast, creatine supplementation promoted a 28 % reduction of tumor weight (P < 0.05). Plasma Hcy (C 6.1 ± 0.6, T 10.3 ± 1.5, TCr 6.3 ± 0.9, µmol/L) and hepatic oxidative stress were lower in the TCr group compared to T. Creatine supplementation was unable to decrease Hcy concentration and to increase SAM/SAH ratio in tumor tissue. These data suggest that creatine effects on hepatic impaired Hcy metabolism promoted by tumor cell inoculation are responsible to decrease plasma Hcy in tumor-bearing rats. In conclusion, Walker-256 tumor growth is associated with progressive hyperhomocysteinemia, body weight loss and liver oxidative stress in rats. Creatine supplementation, however, prevented these tumor-associated perturbations.


Assuntos
Caquexia , Creatina/farmacologia , Hiper-Homocisteinemia , Neoplasias Experimentais , Estresse Oxidativo/efeitos dos fármacos , Animais , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Caquexia/patologia , Creatina/farmacocinética , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/patologia , Hiper-Homocisteinemia/prevenção & controle , Masculino , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ratos , Ratos Wistar
4.
J Physiol ; 593(17): 3959-71, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26148133

RESUMO

There is a long-standing concern that creatine supplementation could be associated with cancer, possibly by facilitating the formation of carcinogenic heterocyclic amines (HCAs). This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, does not cause a significant increase in HCA formation. HCAs detection was unrelated to creatine supplementation. Diet was likely to be the main factor responsible for HCAs formation after either placebo (n = 6) or creatine supplementation (n = 3). These results directly challenge the recently suggested biological plausibility for the association between creatine use and risk of testicular germ cell cancer. Creatine supplementation has been associated with increased cancer risk. In fact, there is evidence indicating that creatine and/or creatinine are important precursors of carcinogenic heterocyclic amines (HCAs). The present study aimed to investigate the acute and chronic effects of low- and high-dose creatine supplementation on the production of HCAs in healthy humans (i.e. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx), 2-amino-(1,6-dimethylfuro[3,2-e]imidazo[4,5-b])pyridine (IFP) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)). This was a non-counterbalanced single-blind crossover study divided into two phases, in which low- and high-dose creatine protocols were tested. After acute (1 day) and chronic supplementation (30 days), the HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx were assessed through a newly developed HPLC-MS/MS method. Dietary HCA intake and blood and urinary creatinine were also evaluated. Out of 576 assessments performed (from 149 urine samples), only nine (3 from creatine and 6 from placebo) showed quantifiable levels of HCAs (8-MeIQx: n = 3; 4,8-DiMeIQx: n = 2; PhIP: n = 4). Individual analyses revealed that diet rather than creatine supplementation was the main responsible factor for HCA formation in these cases. This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, did not cause increases in the carcinogenic HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx in healthy subjects. These findings challenge the long-existing notion that creatine supplementation could potentially increase the risk of cancer by stimulating the formation of these mutagens.


Assuntos
Carcinógenos/metabolismo , Creatina/farmacocinética , Furanos/urina , Imidazóis/urina , Quinoxalinas/urina , Adulto , Aminas , Creatina/sangue , Creatina/urina , Estudos Cross-Over , Dieta , Feminino , Humanos , Masculino , Método Simples-Cego
5.
Amino Acids ; 43(2): 709-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22009139

RESUMO

The objective of this study was to evaluate the effect of creatine supplementation on muscle and plasma markers of oxidative stress after acute aerobic exercise. A total of 64 Wistar rats were divided into two groups: control group (n = 32) and creatine-supplemented group (n = 32). Creatine supplementation consisted of the addition of 2% creatine monohydrate to the diet. After 28 days, the rats performed an acute moderate aerobic exercise bout (1-h swimming with 4% of total body weight load). The animals were killed before (pre) and at 0, 2 and 6 h (n = 8) after acute exercise. As expected, plasma and total muscle creatine concentrations were significantly higher (P < 0.05) in the creatine-supplemented group compared to control. Acute exercise increased plasma thiobarbituric acid reactive species (TBARS) and total lipid hydroperoxide. The same was observed in the soleus and gastrocnemius muscles. Creatine supplementation decreased these markers in plasma (TBARS: pre 6%, 0 h 25%, 2 h 27% and 6 h 20%; plasma total lipid hydroperoxide: pre 38%, 0 h 24%, 2 h 12% and 6 h 20%, % decrease). Also, acute exercise decreased the GSH/GSSG ratio in soleus muscle, which was prevented by creatine supplementation (soleus: pre 8%, 0 h 29%, 2 h 30% and 6 h 44%, % prevention). The results show that creatine supplementation inhibits increased oxidative stress markers in plasma and muscle induced by acute exercise.


Assuntos
Antioxidantes/administração & dosagem , Creatina/administração & dosagem , Estresse Oxidativo , Esforço Físico , Animais , Antioxidantes/farmacocinética , Creatina/farmacocinética , Suplementos Nutricionais , Dissulfeto de Glutationa/metabolismo , Ácido Láctico/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos Lipídicos/sangue , Masculino , Atividade Motora , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
6.
J Nutr Biochem ; 15(8): 473-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15302082

RESUMO

The objective of this study was to determine the effect of creatine supplementation on performance and body composition of swimmers. Eighteen swimmers were evaluated in terms of post-performance lactate accumulation, body composition, creatine and creatinine excretion, and serum creatinine concentrations before and after creatine or placebo supplementation. No significant differences were observed in the marks obtained in swimming tests after supplementation, although lactate concentrations were higher in placebo group during this period. In the creatine-supplemented group, urinary creatine, creatinine, and body mass, lean mass and body water were significantly increased, but no significant difference in muscle or bone mass was observed. These results suggest that creatine supplementation cannot be considered to be an ergogenic supplement ensuring improved performance and muscle mass gain in swimmers.


Assuntos
Composição Corporal/efeitos dos fármacos , Creatina/farmacologia , Suplementos Nutricionais , Natação , Adolescente , Adulto , Disponibilidade Biológica , Creatina/farmacocinética , Creatina/urina , Creatinina/sangue , Creatinina/urina , Dieta , Ingestão de Energia , Exercício Físico , Feminino , Humanos , Lactatos/sangue , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA