Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Semina Ci. agr. ; 42(05): 2717-2734, set.-out. 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31768

RESUMO

Knowledge of the expression of traits associated with drought tolerance is important to mitigate impacts on coffee production in a climate change scenario. This study aimed to understand the genetic divergence between Coffea canephora genotypes grown in the Western Amazon based on leaf vegetative and anatomical traits. For this, fifteen high-performance genotypes were evaluated in a randomized block design with five replications of one plant per plot to analyze three leaf vegetative traits (leaf area index, root volume, and total dry mass) and five leaf anatomical traits (polar and equatorial diameter, density and number of stomata, and stomatal area). The data were interpreted using analysis of variance and the Scott-Knott mean cluster test (p ≤ 0.05). The Tocher optimization method and principal component analysis with reference points were used to quantify the genetic divergence. Tocher clustering separated the fifteen clones into five groups, and the scatter in the plane into three groups. Stomatal density was the trait that most contributed to the dissimilarity between genotypes with the potential to be used in future studies for the selection of water deficit-tolerant genotypes. The BRS 3213 genotype showed the greatest genetic dissimilarity and composed a group isolated from the other genotypes in terms of anatomical characteristics. Hybrids 12 and 15 have leaf anatomical traits with higher drought tolerance potential.(AU)


O conhecimento da expressão de características associadas a tolerância a seca é importante para mitigar os impactos na produção cafeeira em um cenário de mudanças climáticas. Objetivou-se com o presente trabalho entender a divergência de natureza genética entre genótipos de Coffea canephora cultivados na Amazônia Ocidental, com base em características vegetativas e anatômicas foliares. Para isso, quinze genótipos foram avaliados em delineamento de blocos casualizados com cinco repetições de uma planta por parcela, para análise de três características vegetativas (área foliar, volume de raiz, massa seca total) e cinco características anatômicas foliares (diâmetro polar e equatorial; densidade e número de estômatose área estomática). Os dados foram interpretados utilizando análise de variância e o teste de Scott-Knott (p ≤ 0,05). Para quantificar a divergência genética foi interpretado o agrupamento estimado pelo método de otimização de Tocher e a dispersão no plano obtida utilizando a técnica de componentes principais. O agrupamento de Tocher separou os 15 clones em cinco grupos, e a dispersão no plano em três grupos. A densidade estomática foi a característica que mais contribuiu para a dissimilaridade entre os genótipos com potencial para ser utilizada em estudos futuros de seleção de genótipos tolerantes ao déficit hídrico. O genótipo BRS 3213 apresentou maior dissimilaridade genética, constituindo um grupo isolado dos demais genótipos quanto as características anatômicas. Os Híbridos 12 e 15 apresentam características anatômicas foliares com maior potencial de tolerância a seca.(AU)


Assuntos
Coffea/anatomia & histologia , Coffea/genética
2.
Semina ciênc. agrar ; 42(05): 2717-2734, set.-out. 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1501868

RESUMO

Knowledge of the expression of traits associated with drought tolerance is important to mitigate impacts on coffee production in a climate change scenario. This study aimed to understand the genetic divergence between Coffea canephora genotypes grown in the Western Amazon based on leaf vegetative and anatomical traits. For this, fifteen high-performance genotypes were evaluated in a randomized block design with five replications of one plant per plot to analyze three leaf vegetative traits (leaf area index, root volume, and total dry mass) and five leaf anatomical traits (polar and equatorial diameter, density and number of stomata, and stomatal area). The data were interpreted using analysis of variance and the Scott-Knott mean cluster test (p ≤ 0.05). The Tocher optimization method and principal component analysis with reference points were used to quantify the genetic divergence. Tocher clustering separated the fifteen clones into five groups, and the scatter in the plane into three groups. Stomatal density was the trait that most contributed to the dissimilarity between genotypes with the potential to be used in future studies for the selection of water deficit-tolerant genotypes. The BRS 3213 genotype showed the greatest genetic dissimilarity and composed a group isolated from the other genotypes in terms of anatomical characteristics. Hybrids 12 and 15 have leaf anatomical traits with higher drought tolerance potential.


O conhecimento da expressão de características associadas a tolerância a seca é importante para mitigar os impactos na produção cafeeira em um cenário de mudanças climáticas. Objetivou-se com o presente trabalho entender a divergência de natureza genética entre genótipos de Coffea canephora cultivados na Amazônia Ocidental, com base em características vegetativas e anatômicas foliares. Para isso, quinze genótipos foram avaliados em delineamento de blocos casualizados com cinco repetições de uma planta por parcela, para análise de três características vegetativas (área foliar, volume de raiz, massa seca total) e cinco características anatômicas foliares (diâmetro polar e equatorial; densidade e número de estômatose área estomática). Os dados foram interpretados utilizando análise de variância e o teste de Scott-Knott (p ≤ 0,05). Para quantificar a divergência genética foi interpretado o agrupamento estimado pelo método de otimização de Tocher e a dispersão no plano obtida utilizando a técnica de componentes principais. O agrupamento de Tocher separou os 15 clones em cinco grupos, e a dispersão no plano em três grupos. A densidade estomática foi a característica que mais contribuiu para a dissimilaridade entre os genótipos com potencial para ser utilizada em estudos futuros de seleção de genótipos tolerantes ao déficit hídrico. O genótipo BRS 3213 apresentou maior dissimilaridade genética, constituindo um grupo isolado dos demais genótipos quanto as características anatômicas. Os Híbridos 12 e 15 apresentam características anatômicas foliares com maior potencial de tolerância a seca.


Assuntos
Coffea/anatomia & histologia , Coffea/genética
3.
Acta amaz. ; 49(3): 173-178, July-Sept. 2019. ilus, mapas, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-24126

RESUMO

Coffea canephora (Conilon coffee) has great economic importance for the state of Acre, in northern Brazil. The use of insecticides in this crop has increased considerably in recent years. In order to find species of green lacewing (Chrysopidae, Neuroptera) with potential for use in biological pest control in coffee plantations, we sampled green lacewings during one year in an experimental plantation of Conilon coffee in Acre, in order to assess the diversity, abundance and seasonal occurrence of Chrysopidae species. Samplings were carried out weekly using an entomological net. Overall, 1079 specimens of seven green lacewing species were collected: Ceraeochrysa cincta, Ceraeochrysa claveri, Ceraeochrysa cubana, Ceraeochrysa everes, Chrysoperla externa, Leucochrysa (Nodita) cruentata and Leucochrysa (Nodita) marquezi. Ceraeochrysa cubana was the dominant and constant species, comprising 97% of the sampled specimens and occurring in 82% of the weekly samples. The abundance and constant presence of C. cubana, which preys upon several agricultural pests and has shown resistance to various insecticides, make this species a potential candidate for future programs of biological control in Conilon coffee plantations in the southwestern Brazilian Amazon region.(AU)


Coffea canephora (café Conilon) tem grande importância econômica para o estado do Acre, porém o uso de inseticidas nessa cultura tem aumentado consideravelmente nos últimos anos. A fim de prospectar espécies de Chrysopidae (Neuroptera) com potencial para uso em programas de controle biológico de pragas dessa cultura, nós amostramos crisopídeos em um plantio experimental de café Conilon no Acre durante um ano, para avaliar a diversidade, abundância e ocorrência sazonal de espécies deste grupo de insetos. As amostragens foram semanais por meio do uso de rede entomológica. Foram coletados 1079 espécimes de sete espécies de crisopídeos: Ceraeochrysa cincta, Ceraeochrysa claveri, Ceraeochrysa cubana, Ceraeochrysa everes, Chrysoperla externa, Leucochrysa (Nodita) cruentata and Leucochrysa (Nodita) marquezi. Ceraeochrysa cubana foi a espécie mais dominante e constante, constituindo 97% dos exemplares coletados e ocorrendo em 82% das amostras. Esses resultados, somados ao fato de que C. cubana é predadora de diversas pragas agrícolas e possui resistência a vários inseticidas, indicam que essa espécie é candidata potencial para o uso em futuros programas de controle biológico de pragas de café Conilon no sudoeste da Amazônia brasileira.(AU)


Assuntos
Coffea/anatomia & histologia , Coffea/classificação , Biodiversidade , Rubiaceae , Inseticidas/efeitos adversos
4.
Ann Bot ; 122(1): 117-131, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29659697

RESUMO

Background and Aims: Dynamics in branch and leaf growth parameters, such as the phyllochron, duration of leaf expansion, leaf life span and bud mortality, determine tree architecture and canopy foliage distribution. We aimed to estimate leaf growth parameters in adult Arabica coffee plants based on leaf supporter axis order and position along the vertical profile, considering their modifications related to seasonal growth, air [CO2] and water availability. Methods: Growth and mortality of leaves and terminal buds of adult Arabica coffee trees were followed in two independent field experiments in two sub-tropical climate regions of Brazil, Londrina-PR (Cfa) and Jaguariúna-SP (Cwa). In the Cwa climate, coffee trees were grown under a FACE (free air CO2 enrichment) facility, where half of those had been irrigated. Plants were observed at a 15-30 d frequency for 1 year. Leaf growth parameters were estimated on five axes orders and expressed as functions of accumulated thermal time (°Cd per leaf). Key Results: The phyllochron and duration of leaf expansion increased with axis order, from the seond to the fourth. The phyllochron and life span during the reduced vegetative seasonal growth were greater than during active growth. It took more thermal time for leaves from the first- to fourth-order axes to expand their blades under irrigation compared with rainfed conditions. The compensation effects of high [CO2] for low water availability were observed on leaf retention on the second and third axes orders, and duration of leaf expansion on the first- and fourth-order axes. The second-degree polynomials modelled leaf growth parameter distribution in the vertical tree profile, and linear regressions modelled the proportion of terminal bud mortality. Conclusions: Leaf growth parameters in coffee plants were determined by axis order. The duration of leaf expansion contributed to phyllochron determination. Leaf growth parameters varied according the position of the axis supporter along the vertical profile, suggesting an effect of axes age and micro-environmental light modulations.


Assuntos
Dióxido de Carbono/metabolismo , Coffea/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Atmosfera , Clima , Coffea/anatomia & histologia , Coffea/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estações do Ano , Água/metabolismo
5.
Ann Bot ; 121(5): 1065-1078, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29452388

RESUMO

Background and Aims: Climate forecasts suggest that [CO2] in the atmosphere will continue to increase. Structural and ecophysiological responses to elevated air [CO2] (e[CO2]) in tree species are contradictory due to species-dependent responses and relatively short-term experiments. It was hypothesized that long-term exposure (4 year) to e[CO2] would change canopy structure and function of Coffea arabica trees. Methods: Coffee plants were grown in a FACE (free air CO2 enrichment) facility under two air [CO2]: actual and elevated (actual + approx. 200 µL CO2 L-1). Plants were codified following the VPlants methodology to obtain coffee mock-ups. Plant canopies were separated into three 50 cm thick layers over a vertical profile to evaluate their structure and photosynthesis, using functional-structural plant modelling. Key Results: Leaf area was strongly reduced on the bottom and upper canopy layers, and increased soil carbon concentration suggested changes in carbon partitioning of coffee trees under e[CO2]. Increased air [CO2] stimulated stomatal conductance and leaf photosynthesis at the middle and upper canopy layers, increasing water-use efficiency. Under e[CO2], plants showed reduced diameter of the second-order axes and higher investment in the youngest third to fifth-order axes. Conclusions: The responses of Arabica coffee grown under long-term exposure to e[CO2] integrated structural and functional modifications, which balanced leaf area loss through improvements in leaf and whole-plant photosynthesis.


Assuntos
Dióxido de Carbono/metabolismo , Coffea/anatomia & histologia , Fotossíntese , Atmosfera , Coffea/fisiologia , Modelos Biológicos , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Solo/química , Árvores , Água/metabolismo
6.
J Sci Food Agric ; 96(9): 3098-108, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26439192

RESUMO

BACKGROUND: Detailed knowledge of coffee production systems enables optimization of crop management, harvesting and post-harvest techniques. In this study, coffee quality is mapped as a function of coffee variety, altitude and terrain aspect attributes. The work was performed in the Zona da Mata, Minas Gerais, Brazil. RESULTS: A large range of coffee quality grades was observed for the Red Catuai variety. For the Yellow Catuai variety, no quality grades lower than 70 were observed. Regarding the terrain aspect, samples from the southeast-facing slope (SEFS) and the northwest-facing slope (NWFS) exhibited distinct behaviors. The SEFS samples had a greater range of quality grades than did the NWFS samples. The highest grade was obtained from an NWFS point. The lowest quality values and the largest range of grades were observed at lower altitudes. The extracts from the highest-altitude samples did not produce any low-quality coffee. CONCLUSIONS: The production site's position and altitude are the primary variables that influenced the coffee quality. The study area has micro-regions with grades ranging from 80 to 94. These areas have the potential for producing specialty coffees. © 2015 Society of Chemical Industry.


Assuntos
Bebidas/normas , Coffea/anatomia & histologia , Café/normas , Agricultura/métodos , Altitude , Análise de Variância , Bebidas/análise , Brasil , Coffea/química , Coffea/classificação , Café/química , Café/classificação , Qualidade dos Alimentos , Mapeamento Geográfico , Controle de Qualidade , Paladar
7.
Ci. Rural ; 44(4): 660-665, abr. 2014. ilus
Artigo em Inglês | VETINDEX | ID: vti-28512

RESUMO

The aim of this research was to characterize and compare two types of calli from leaf explants of Coffea arabica (cultivar Catiguá). Cells of different types of callus were successfully characterized regarding viability and internal and external morphological characteristics. It was obtained two morphologically distinct types of callus: (i) yellow friable and (ii) transparent watery. The yellow friable calli showed higher cell viability and embryogenic characteristics. Scanning and transmission electron microscopy showed embryogenic characteristics in cells of the yellow friable calli evidenced by the presence of small and isodiametric cells, while transparent watery calli showed elongated cells and large cytoplasm vacuolization.(AU)


O objetivo deste trabalho foi caracterizar e comparar dois tipos de calos de explantes foliares de Coffea arabica (cultivar Catiguá). Células de diferentes tipos de calos foram caracterizadas quanto a viabilidade e características morfológicas externas e internas. Foram obtidos dois tipos de calos morfologicamente distintos: (a) amarelo friável e (b) transparente aquoso. Os calos amarelos friáveis apresentaram maior viabilidade celular e características embriogênicas. Microscopia eletrônica de varredura e transmissão mostraram características embriogênicas em calos amarelos friáveis evidenciadas pela presença de células pequenas e isodiamétricas. Os calos transparentes aquosos apresentaram células alongadas e vacuolizadas.(AU)


Assuntos
Coffea/anatomia & histologia , Sobrevivência Celular
8.
Carbohydr Polym ; 93(1): 135-43, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23465912

RESUMO

Coffee plants were subjected to heat stress (37 °C) and compared with control plants (24 °C). Cell wall polysaccharides were extracted using water (W), EDTA (E) and 4M NaOH (H30 and H70). In addition, monolignols were analyzed, and the leaves were observed by microscopy. Plants under heat stress accumulated higher contents of arabinose and galactose in fraction W. Xylose contents were observed to decrease in H30 fractions after the heat stress, whereas galactose and uronic acid increased. H70 fractions from plants exposed to heat stress showed increased xylose contents, whereas the contents of arabinose and glucose decreased. Differences in the molar-mass profiles of polysaccharides were also observed. The primary monolignol contents increased after the heat stress. Structural alterations in palisade cells and ultrastructural damage in chloroplasts were also observed. Our results demonstrate that the chemical profile of coffee cell-wall polymers and structural cell anatomy change under heat stress.


Assuntos
Parede Celular/química , Coffea/química , Folhas de Planta/anatomia & histologia , Estresse Fisiológico , Arabinose/química , Cromatografia em Gel/métodos , Coffea/anatomia & histologia , Galactanos/química , Temperatura Alta , Lignina/química , Pectinas/química , Células Vegetais/química , Polissacarídeos/química , Ácidos Urônicos/química , Água/química
9.
Photochem Photobiol ; 88(4): 928-37, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22372995

RESUMO

The aim of this study was to determine which anthocyanins are related to the purple coloration of young leaves in Coffea arabica var. Purpurascens and assess their impact on photosynthesis as compared to C. arabica var. Catuaí, with green leaves. Two delphinidin glicosides were identified and histological cross-sections showed they were located throughout the adaxial epidermis in young leaves, disappearing as the leaves mature. Regardless the irradiance level, the photosynthetic performance of Purpurascens leaves did not differ from that observed in leaves of the Catuaí variety, providing no evidence that anthocyanins improve photosynthetic performance in coffee plants. To analyze the photoprotective action of anthocyanins, we evaluated the isomerization process for chlorogenic acids (CGAs) in coffee leaves exposed to UV-B radiation. No differences were observed in the total concentration of phenolic compounds in either variety before or after the UV treatment; however, we observed less degradation of CGA isomers in the Purpurascens leaves and a relative increase of cis-5-caffeoylquinic acid, a positional isomer of one of the most abundant form of CQA in coffee leaves, trans-5-caffeoylquinic acid, suggesting a possible protective role for anthocyanins in this purple coffee variety.


Assuntos
Antocianinas/análise , Coffea/química , Fenóis/análise , Folhas de Planta/química , Ácido Quínico/análogos & derivados , Ácido Clorogênico/análise , Clorofila/análise , Cromatografia Líquida de Alta Pressão , Coffea/anatomia & histologia , Coffea/fisiologia , Cor , Glicosídeos/análise , Isomerismo , Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Ácido Quínico/análise , Análise Espectral , Raios Ultravioleta
10.
Physiol Plant ; 144(2): 111-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21939445

RESUMO

Based on indirect evidence, it was previously suggested that shading could attenuate the negative impacts of drought on coffee (Coffea arabica), a tropical crop species native to shady environments. A variety (47) of morphological and physiological traits were examined in plants grown in 30-l pots in either full sunlight or 85% shade for 8 months, after which a 4-month water shortage was implemented. Overall, the traits showed weak or negligible responses to the light × water interaction, explaining less than 10% of the total data variation. Only slight variations in biomass allocation were observed in the combined shade and drought treatment. Differences in relative growth rates were mainly associated with physiological and not with morphological adjustments. In high light, drought constrained the photosynthetic rate through stomatal limitations with no sign of apparent photoinhibition; in low light, such constraints were apparently linked to biochemical factors. Sun-grown plants displayed osmotic adjustments, decreased tissue elasticities and improved long-term water use efficiencies, especially under drought. Regardless of the water availability, higher concentrations of lipids, total phenols, total soluble sugars and lignin were found in high light compared to shade conditions, in contrast to the effects on cellulose and hemicellulose concentrations. Proline concentrations increased in water-deprived plants, particularly those grown under full sun. Phenotypic plasticity was much higher in response to the light than to the water supply. Overall, shading did not alleviate the negative impacts of drought on the coffee tree.


Assuntos
Coffea/anatomia & histologia , Coffea/fisiologia , Escuridão , Secas , Luz , Coffea/crescimento & desenvolvimento , Coffea/efeitos da radiação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/química , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Solubilidade/efeitos da radiação , Água
11.
Ann Bot ; 96(1): 101-8, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15888500

RESUMO

BACKGROUND AND AIMS: Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits. * METHODS: Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed. * KEY RESULTS AND CONCLUSIONS: With irrigation, plant hydraulic conductance (K(L)), midday psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, psi(x), g(s) and K(L) recovered rapidly following re-watering. Differences in root depth, K(L) and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.


Assuntos
Coffea/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Água/metabolismo , Coffea/anatomia & histologia , Folhas de Planta/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Fatores de Tempo
12.
Tree Physiol ; 25(6): 753-60, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15805095

RESUMO

Increasing fruit load (from no berries present to 25, 50 and 100% of the initial fruit load) significantly decreased branch growth on 5-year-old coffee (Coffea arabica L.) trees of the dwarf cultivar 'Costa Rica 95', during their third production cycle. Ring-barking the branches further reduced their growth. Berry dry mass at harvest was significantly reduced by increasing fruit load. Dry matter allocation to berries was four times that allocated to branch growth during the cycle. Branch dieback and berry drop were significantly higher at greater fruit loads. This illustrates the importance of berry sink strength and indicates that there is competition for carbohydrates between berries and shoots and also among berries. Leaf net photosynthesis (P(n)) increased with increasing fruit load. Furthermore, leaves of non-isolated branches bearing full fruit load achieved three times higher P(n) than leaves of isolated (ring-barked) branches without berries, indicating strong relief of leaf P(n) inhibition by carbohydrate demand from berries and other parts of the coffee tree when excess photoassimilates could be exported. Leaf P(n) was significantly higher in the morning than later during the day. This reduction in leaf P(n) is generally attributed to stomatal closure in response to high irradiance, temperature and vapor pressure deficit in the middle of the day; however, it could also be a feedback effect of reserves accumulating during the morning when climatic conditions for leaf P(n) were optimal, because increased leaf mass ratio was observed in leaves of ring-barked branches with low or no fruit loads. Rates of CO(2) emission by berries decreased and calculated photosynthetic rates of berries increased with increasing photosynthetic photon flux (PPF) especially at low PPFs (0 to 100 micromol m(-2) s(-1)). The photosynthetic contribution of berries at the bean-filling stage was estimated to be about 30% of their daily respiration costs and 12% of their total carbon requirements at PPF values commonly experienced in the field (200 to 500 micromol m(-2) s(-1)).


Assuntos
Carbono/metabolismo , Coffea/metabolismo , Frutas/crescimento & desenvolvimento , Fotossíntese , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Coffea/anatomia & histologia , Coffea/crescimento & desenvolvimento , Frutas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA