Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670307

RESUMO

Non-dystrophic myotonias have been linked to loss-of-function mutations in the ClC-1 chloride channel or gain-of-function mutations in the Nav1.4 sodium channel. Here, we describe a family with members diagnosed with Thomsen's disease. One novel mutation (p.W322*) in CLCN1 and one undescribed mutation (p.R1463H) in SCN4A are segregating in this family. The CLCN1-p.W322* was also found in an unrelated family, in compound heterozygosity with the known CLCN1-p.G355R mutation. One reported mutation, SCN4A-p.T1313M, was found in a third family. Both CLCN1 mutations exhibited loss-of-function: CLCN1-p.W322* probably leads to a non-viable truncated protein; for CLCN1-p.G355R, we predict structural damage, triggering important steric clashes. The SCN4A-p.R1463H produced a positive shift in the steady-state inactivation increasing window currents and a faster recovery from inactivation. These gain-of-function effects are probably due to a disruption of interaction R1463-D1356, which destabilizes the voltage sensor domain (VSD) IV and increases the flexibility of the S4-S5 linker. Finally, modelling suggested that the p.T1313M induces a strong decrease in protein flexibility on the III-IV linker. This study demonstrates that CLCN1-p.W322* and SCN4A-p.R1463H mutations can act alone or in combination as inducers of myotonia. Their co-segregation highlights the necessity for carrying out deep genetic analysis to provide accurate genetic counseling and management of patients.


Assuntos
Canais de Cloreto/genética , Mutação/genética , Miotonia Congênita/genética , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Miotonia Congênita/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Linhagem
2.
Dokl Biochem Biophys ; 484(1): 9-12, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31012002

RESUMO

An effective bacterial system for the production of ß-toxin Ts1, the main component of the Brazilian scorpion Tityus serrulatus venom, was developed. Recombinant toxin and its 15N-labeled analogue were obtained via direct expression of synthetic gene in Escherichia coli with subsequent folding from the inclusion bodies. According to NMR spectroscopy data, the recombinant toxin is structured in an aqueous solution and contains a significant fraction of ß-structure. The formation of a stable disulfide-bond isomer of Ts1, having a disordered structure, has also been observed during folding. Recombinant Ts1 blocks Na+ current through NaV1.5 channels without affecting the processes of activation and inactivation. At the same time, the effect upon NaV1.4 channels is associated with a shift of the activation curve towards more negative membrane potentials.


Assuntos
Venenos de Escorpião , Bloqueadores dos Canais de Sódio , Animais , Humanos , Proteínas Musculares/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Venenos de Escorpião/biossíntese , Venenos de Escorpião/química , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/isolamento & purificação , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
3.
Biochem Biophys Res Commun ; 506(4): 826-832, 2018 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389137

RESUMO

Voltage-gated sodium channels play important roles in human physiology. However, their complexity hinders the understanding of their physiology and pathology at atomic level. We took advantage of the structural reports of similar channels obtained by cryo-EM (EeNav1.4, and NavPaS), and constructed models of human Nav1.4 channels at closed and open states. The open-state model is very similar to the recently published cryo-EM structure of hNav1.4. The comparison of both models shows shifts of the voltage sensors (VS) of DIII and DIV. The activated position of VS-DII in the closed model was demonstrated by Ts1 docking, thereby confirming the requirement that VS-DI, VS-DII and VS-DIII must be activated for the channel to open. The interactions observed with VS-DIII suggest a stepwise, yet fast, transition from resting to activated state. These models provide structural insights on the closed-open transition of the channel.


Assuntos
Ativação do Canal Iônico , Modelos Biológicos , Músculo Esquelético/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/química , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Humanos , Simulação de Acoplamento Molecular
4.
Eur Biophys J ; 46(5): 485-494, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28012039

RESUMO

The mechanism of inactivation of mammalian voltage-gated Na+ channels involves transient interactions between intracellular domains resulting in direct pore occlusion by the IFM motif and concomitant extracellular interactions with the ß1 subunit. Navß1 subunits constitute single-pass transmembrane proteins that form protein-protein associations with pore-forming α subunits to allosterically modulate the Na+ influx into the cell during the action potential of every excitable cell in vertebrates. Here, we explored the role of the intracellular IFM motif of rNav1.4 (skeletal muscle isoform of the rat Na+ channel) on the α-ß1 functional interaction and showed for the first time that the modulation of ß1 is independent of the IFM motif. We found that: (1) Nav1.4 channels that lack the IFM inactivation particle can undergo a "C-type-like inactivation" albeit in an ultraslow gating mode; (2) ß1 can significantly accelerate the inactivation of Nav1.4 channels in the absence of the IFM motif. Previously, we identified two residues (T109 and N110) on the ß1 subunit that disrupt the α-ß1 allosteric modulation. We further characterized the electrophysiological effects of the double alanine substitution of these residues demonstrating that it decelerates inactivation and recovery from inactivation, abolishes the modulation of steady-state inactivation and induces a current rundown upon repetitive stimulation, thus causing a general loss of function. Our results contribute to delineating the process of the mammalian Na+ channel inactivation. These findings may be relevant to the design of pharmacological strategies, targeting ß subunits to treat pathologies associated to Na+ current dysfunction.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.4/química , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/química , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Animais , Fenômenos Eletrofisiológicos , Espaço Intracelular/metabolismo , Cinética , Modelos Moleculares , Mutação , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Ratos
5.
Toxins (Basel) ; 8(5)2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27164145

RESUMO

Saxitoxin (STX) and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav), impeding passage of Na⁺ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.4 to find a relationship between the binding properties and the known mammalian toxicity of selected STX analogs. We inferred hypothetical toxicities for the benzoyl analogs from the modeled values. We demonstrate that these toxins exhibit different binding modes with similar free binding energies and that these alternative binding modes are equally probable. We propose that the principal binding that governs ligand recognition is mediated by electrostatic interactions. Our simulation constitutes the first in silico modeling study on benzoyl-type paralytic toxins and provides an approach towards a better understanding of the mode of action of STX and its analogs.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Saxitoxina/análogos & derivados , Saxitoxina/metabolismo , Dinoflagellida/metabolismo , Simulação de Acoplamento Molecular , Canal de Sódio Disparado por Voltagem NAV1.4/química , Saxitoxina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA