Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 41(1): 47-60, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33203744

RESUMO

The lateral line (LL) is a sensory system that allows fish and amphibians to detect water currents. LL responsiveness is modulated by efferent neurons that aid in distinguishing between external and self-generated stimuli, maintaining sensitivity to relevant cues. One component of the efferent system is cholinergic, the activation of which inhibits afferent activity. LL hair cells (HCs) share structural, functional, and molecular similarities with those of the cochlea, making them a popular model for studying human hearing and balance disorders. Because of these commonalities, one could propose that the receptor at the LL efferent synapse is a α9α10 nicotinic acetylcholine receptor (nAChR). However, the identities of the molecular players underlying ACh-mediated inhibition in the LL remain unknown. Surprisingly, through the analysis of single-cell expression studies and in situ hybridization, we describe that α9, but not the α10, subunits are enriched in zebrafish HCs. Moreover, the heterologous expression of zebrafish α9 subunits indicates that homomeric receptors are functional and exhibit robust ACh-gated currents blocked by α-bungarotoxin and strychnine. In addition, in vivo Ca2+ imaging on mechanically stimulated zebrafish LL HCs show that ACh elicits a decrease in evoked Ca2+ signals, regardless of HC polarity. This effect is blocked by both α-bungarotoxin and apamin, indicating coupling of ACh-mediated effects to small-conductance Ca2+-activated potassium (SKs) channels. Our results indicate that an α9-containing (α9*) nAChR operates at the zebrafish LL efferent synapse. Moreover, the activation of α9* nAChRs most likely leads to LL HC hyperpolarization served by SK channels.SIGNIFICANCE STATEMENT The fish lateral line (LL) mechanosensory system shares structural, functional, and molecular similarities with those of the mammalian cochlea. Thus, it has become an accessible model for studying human hearing and balance disorders. However, the molecular players serving efferent control of LL hair cell (HC) activity have not been identified. Here we demonstrate that, different from the hearing organ of vertebrate species, a nicotinic acetylcholine receptor composed only of α9 subunits operates at the LL efferent synapse. Activation of α9-containing receptors leads to LL HC hyperpolarization because of the opening of small-conductance Ca2+-activated potassium channels. These results will further aid in the interpretation of data obtained from LL HCs as a model for cochlear HCs.


Assuntos
Vias Eferentes/fisiologia , Sistema da Linha Lateral/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Sinapses/fisiologia , Animais , Bungarotoxinas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Regulação da Expressão Gênica , Células Ciliadas Auditivas/fisiologia , Antagonistas Nicotínicos/farmacologia , Oócitos , Estimulação Física , Receptores Nicotínicos/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Estricnina/farmacologia , Xenopus , Peixe-Zebra
2.
Brain Res ; 1348: 187-99, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20553876

RESUMO

Small conductance calcium (Ca(2+)) activated SK channels are critical regulators of neuronal excitability in hippocampus. Accordingly, these channels are thought to play a key role in controlling neuronal activity in acute models of epilepsy. In this study, we investigate the expression and function of SK channels in the pilocarpine model of mesial temporal lobe epilepsy. For this purpose, protein expression was assessed using western blotting assays and gene expression was analyzed using TaqMan-based probes and the quantitative real-time polymerase chain reaction (qPCR) comparative method delta-delta cycle threshold ( big up tri, open big up tri, openCT) in samples extracted from control and epileptic rats. In addition, the effect of SK channel antagonist UCL1684 and agonist NS309 on CA1 evoked population spikes was studied in hippocampal slices. Western blotting analysis showed a significant reduction in the expression of SK1 and SK2 channels at 10days following status epilepticus (SE), but levels recovered at 1month and at more than 2months after SE. In contrast, a significant down-regulation of SK3 channels was detected after 10days of SE. Analysis of gene expression by qPCR revealed a significant reduction of transcripts for SK2 (Kcnn1) and SK3 (Kcnn3) channels as early as 10days following pilocarpine-induced SE and during the chronic phase of the pilocarpine model. Moreover, bath application of UCL1684 (100nM for 15min) induced a significant increase of the population spike amplitude and number of spikes in the hippocampal CA1 area of slices obtained control and chronic epileptic rats. This effect was obliterated by co-administration of UCL1684 with SK channel agonist NS309 (1microM). Application of NS309 failed to modify population spikes in the CA1 area of slices taken from control and epileptic rats. These data indicate an abnormal expression of SK channels and a possible dysfunction of these channels in experimental MTLE.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Agonistas Muscarínicos/efeitos adversos , Pilocarpina/efeitos adversos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Estado Epiléptico , Fatores Etários , Alcanos/farmacologia , Análise de Variância , Animais , Modelos Animais de Doenças , Interações Medicamentosas , Hipocampo/patologia , Técnicas In Vitro , Indóis/farmacologia , Masculino , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Oximas/farmacologia , Compostos de Quinolínio/farmacologia , Ratos , Ratos Sprague-Dawley , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Fatores de Tempo
3.
J Assoc Res Otolaryngol ; 10(3): 397-406, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19452222

RESUMO

Efferent inhibition of cochlear hair cells is mediated by alpha9alpha10 nicotinic cholinergic receptors (nAChRs) functionally coupled to calcium-activated, small conductance (SK2) potassium channels. Before the onset of hearing, efferent fibers transiently make functional cholinergic synapses with inner hair cells (IHCs). The retraction of these fibers after the onset of hearing correlates with the cessation of transcription of the Chrna10 (but not the Chrna9) gene in IHCs. To further analyze this developmental change, we generated a transgenic mice whose IHCs constitutively express alpha10 into adulthood by expressing the alpha10 cDNA under the control of the Pou4f3 gene promoter. In situ hybridization showed that the alpha10 mRNA is expressed in IHCs of 8-week-old transgenic mice, but not in wild-type mice. Moreover, this mRNA is translated into a functional protein, since IHCs from P8-P10 alpha10 transgenic mice backcrossed to a Chrna10(-/-) background (whose IHCs have no cholinergic function) displayed normal synaptic and acetylcholine (ACh)-evoked currents in patch-clamp recordings. Thus, the alpha10 transgene restored nAChR function. However, in the alpha10 transgenic mice, no synaptic or ACh-evoked currents were observed in P16-18 IHCs, indicating developmental down-regulation of functional nAChRs after the onset of hearing, as normally observed in wild-type mice. The lack of functional ACh currents correlated with the lack of SK2 currents. These results indicate that multiple features of the efferent postsynaptic complex to IHCs, in addition to the nAChR subunits, are down-regulated in synchrony after the onset of hearing, leading to lack of responses to ACh.


Assuntos
Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/metabolismo , Audição/fisiologia , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Colinérgicos/farmacologia , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Audição/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Fator de Transcrição Brn-3C/genética , Fator de Transcrição Brn-3C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA