RESUMO
The objective of the present study was to optimize parameters for the cultivation of Lichtheimia corymbifera (mesophilic) and Byssochlamys spectabilis (thermophilic) for the production of ß-glucosidases and to compare the catalytic and thermodynamic properties of the partially purified enzymes. The maximum amount of ß-glucosidase produced by L. corymbifera was 39 U/g dry substrate (or 3.9 U/mL), and that by B. spectabilis was 77 U/g (or 7.7 U/mL). The optimum pH and temperature were 4.5 and 55 °C and 4.0 and 50 °C for the enzyme from L. corymbifera and B. spectabilis, respectively. ß-Glucosidase produced by L. corymbifera was stable at pH 4.0-7.5, whereas the enzyme from B. spectabilis was stable at pH 4.0-6.0. Regarding the thermostability, ß-glucosidase produced by B. spectabilis remained stable for 1 h at 50 °C, and that from L. corymbifera was active for 1 h at 45 °C. Determination of thermodynamic parameters confirmed the greater thermostability of the enzyme produced by the thermophilic fungus B. spectabilis, which showed higher values of ΔH, activation energy for denaturation (Ea), and half-life t(1/2). The enzymes were stable in the presence of ethanol and were competitively inhibited by glucose. These characteristics contribute to their use in the simultaneous saccharification and fermentation of vegetable biomass.
Assuntos
Byssochlamys/enzimologia , Celulases/química , Proteínas Fúngicas/química , Mucorales/enzimologia , Byssochlamys/crescimento & desenvolvimento , Catálise , Celulases/antagonistas & inibidores , Celulases/isolamento & purificação , Técnicas de Cultura/métodos , Inibidores Enzimáticos/química , Etanol/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/isolamento & purificação , Glucose/química , Concentração de Íons de Hidrogênio , Cinética , Mucorales/crescimento & desenvolvimento , Temperatura , TermodinâmicaRESUMO
The percentage P (%) of spoiled bottles (n=40) of clarified apple juice due to Byssochlamys fulva, was modeled by using a logistic model: P = P(max)/1 + exp (k(tau-t)) where P(max) (%) the maximum percentage of spoiled bottles, k (h(-1)) a slope parameter and tau (h) the time for P=P(max)/2. Bottles of pasteurized apple juice were inoculated with B. fulva IOC 4518 ascospores for low and high initial loads, 4.8+/-2.3 ascospores/100mL and 19.3+/-4.6 ascospores/100mL respectively and incubated at 21 degrees C and 30 degrees C. P(max) was not significantly different from 100% except for a low initial load at 21 degrees C. Model parameters were estimated with a good accuracy, RMSE in the range 3.89-7.50. Then the model was used to determine the time for 10% bottles spoiled, t(10%). This time was greater at low initial loads, 57.4 and 104 h at 30 and 21 degrees C respectively, than at high initial loads 23.9 and 75.1h at 30 and 21 degrees C respectively. This study demonstrated that even at a very low initial contamination, clarified apple juice can be easily spoiled by B. fulva highlighting the importance of controlling critical control steps of fruit juice processing (i.e., fruit washing, juice filtration and pasteurization).
Assuntos
Bebidas/microbiologia , Byssochlamys/crescimento & desenvolvimento , Byssochlamys/metabolismo , Manipulação de Alimentos/métodos , Conservação de Alimentos , Malus/microbiologia , Modelos Logísticos , Temperatura , Fatores de TempoRESUMO
AIMS: To determine thermal resistance, the effect of pasteurization temperature variations (c. 2 degrees C) in a continuous system in the number of decimal reductions (n) of a Byssochlamys strain in clarified apple juice (CAJ). METHODS AND RESULTS: Thermal destruction kinetics of Byssochlamys fulva IOC 4518 in thermal death tubes were determined at 85 degrees , 90 degrees , 92 degrees and 95 degrees C by using Weibull distribution frequency model. Three processes with different heating and holding temperatures (A: 94 degrees , 92 degrees C; B: 95 degrees , 93 degrees C; C: 96 degrees , 94 degrees C, respectively) were performed in a continuous system. Process time was 30 s. delta (time of first decimal reduction) values were: 42.98, 8.10, 3.62 and 1.81 min. Variable n ranged from 0.16 to >4.78 for process B (equivalent to industrial). Variable n (0.95-2.66 log CFU ml(-1)) were obtained in CAJ bottles processed under condition B, while process A resulted in total heat-resistant mould (HRM) survival and process C in total HRM destruction. CONCLUSIONS: This study demonstrates that small variations in temperature during the CAJ pasteurization could result in elimination or survival of HRM due to its nonlogarithmic behaviour. SIGNIFICANCE AND IMPACT OF THE STUDY: This was the first study to use Weibull frequency method to model inactivation of HRM in fruit juices. Temperature variations could culminate in the presence of HRM in pasteurized juices even when low counts (<10 spores per 100 ml) were present in the raw materials.