Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.147
Filtrar
1.
J Environ Sci (China) ; 149: 99-112, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181682

RESUMO

With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log10 removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is 1O2, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by 1O2. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (∼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.


Assuntos
Biomassa , Nanotubos de Carbono , Nanotubos de Carbono/química , Vírus de Plantas/fisiologia , Purificação da Água/métodos , Tobamovirus , Peróxidos
2.
J Environ Sci (China) ; 147: 230-243, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003043

RESUMO

Enhancing soil organic matter characteristics, ameliorating physical structure, mitigating heavy metal toxicity, and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate. The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation. Despite this, there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation. The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate, under the combined effects of biomass co-smoldering pyrolysis and plant colonization. The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects, which enhance the physical and chemical properties of tailings, while simultaneously accelerating the rate of mineral weathering. Notable improvements include the amelioration of extreme pH levels, nutrient enrichment, the formation of aggregates, and an increase in enzyme activity, all of which collectively demonstrate the successful attainment of tailings substrate reconstruction. Evidence of the accelerated weathering was verified by phase and surface morphology analysis using X-ray diffraction and scanning electron microscopy. Discovered corrosion and fragmentation on the surface of minerals. The weathering resulted in corrosion and fragmentation of the surface of the treated mineral. This study confirms that co-smoldering pyrolysis of biomass, combined with plant colonization, can effectively promote the transformation of tailings into soil-like substrates. This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.


Assuntos
Biomassa , Mineração , Poluentes do Solo , Solo , Solo/química , Pirólise , Plantas , Biodegradação Ambiental
3.
J Oleo Sci ; 73(10): 1295-1310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39358216

RESUMO

Depleting fossil fuel resources and increasing energy demand have intensified the emphasis on biofuel production cyanobacteria. In this study, 19 cyanobacterial filamentous strains were isolated from various regions of Pakistan, including the northern areas and the University of the Punjab, Lahore. Sudan black, Nile red, and BODIPY staining, together with CLSM, fluorimetry, FTIR, growth in different nitrate concentrations, and GC techniques, were used to confirm and measure the lipid and diesel contents within isolated cyanobacterial filaments. Oscillatoria sp. strain CFF-6 showed a significantly higher yield (biodiesel/ biomass=35.6%). Leptolyngbya sp. strain CFF-18 showed a higher yield (biodiesel/biomass=17.1%) compared to other Leptolyngbya strains. FAME (Fatty Acid Methyl Ester) analysis was also performed. Oscillatoria are better biodiesel producers in comparison to other filamentous strains.


Assuntos
Biocombustíveis , Cianobactérias , Paquistão , Cianobactérias/metabolismo , Biomassa , Metabolismo dos Lipídeos , Oscillatoria/metabolismo , Ácidos Graxos/análise
4.
Environ Microbiol Rep ; 16(5): e70010, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39351641

RESUMO

The primary approach to managing biofouling in industrial water systems involves the large-scale use of biocides. It is well-established that biofilms are 'cell factories' that release planktonic cells even when challenged with antimicrobials. The effect of isothiazolinone on the metabolic activity and biomass of mixed Pseudomonas biofilms was monitored in real-time using the CEMS-BioSpec system. The exposure of biofilms to the minimum inhibitory concentration (1.25 mg L-1) of biocide did not impact planktonic cell production (log 7.5 CFU mL-1), while whole-biofilm metabolic activity and biomass accumulation increased. Only the maximum biocide concentration (80 mg L-1) resulted in a change in planktonic cell yields and temporal inhibition of biofilm activity and biomass, a factor that needs due consideration in view of dilution in industrial settings. Interfacing the real-time measurement of metabolic activity and biomass with dosing systems is especially relevant to optimizing the use of biocides in industrial water systems.


Assuntos
Biofilmes , Biomassa , Desinfetantes , Plâncton , Tiazóis , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Tiazóis/metabolismo , Desinfetantes/farmacologia , Plâncton/efeitos dos fármacos , Plâncton/metabolismo , Plâncton/crescimento & desenvolvimento , Pseudomonas/metabolismo , Pseudomonas/efeitos dos fármacos , Pseudomonas/fisiologia , Pseudomonas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana
5.
Biol Lett ; 20(10): 20240295, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39353567

RESUMO

Ecosystem restoration interventions often utilize visible elements to restore an ecosystem (e.g. replanting native plant communities and reintroducing lost species). However, using acoustic stimulation to help restore ecosystems and promote plant growth has received little attention. Our study aimed to assess the effect of acoustic stimulation on the growth rate and sporulation of the plant growth-promoting fungus Trichoderma harzianum Rifai, 1969. We played a monotone acoustic stimulus (80 dB sound pressure level (SPL) at a peak frequency of 8 kHz and a bandwidth at -10 dB from the peak of 6819 Hz-parameters determined via review and pilot research) over 5 days to T. harzianum to assess whether acoustic stimulation affected the growth rate and sporulation of this fungus (control samples received only ambient sound stimulation less than 30 dB). We show that the acoustic stimulation treatments resulted in increased fungal biomass and enhanced T. harzianum conidia (spore) activity compared to controls. These results indicate that acoustic stimulation influences plant growth-promoting fungal growth and potentially facilitates their functioning (e.g. stimulating sporulation). The mechanism responsible for this phenomenon may be fungal mechanoreceptor stimulation and/or potentially a piezoelectric effect; however, further research is required to confirm this hypothesis. Our novel study highlights the potential of acoustic stimulation to alter important fungal attributes, which could, with further development, be harnessed to aid ecosystem restoration and sustainable agriculture.


Assuntos
Estimulação Acústica , Trichoderma , Trichoderma/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Biomassa , Ecossistema
6.
J Agric Food Chem ; 72(39): 21475-21487, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354851

RESUMO

The effect of humic acid extracted from peat (AHt) on improving the struvite (STR) fertilizing efficiency is explored. To this end, a soil incubation study is correlated to plant assays comparing STR, STR-AHt, and superphosphate (SSP). Characterization techniques confirm the incorporation of the AHt into the STR. The P-pool distribution of STR and SSP is similar in the soil incubation, with STR-AHt presenting a higher labile P at 90 days passing from 10 to 15% P from SSP and STR to 25% P with STR-AHt. However, when applied to barley and tomato, STR yields more shoot P content, aboveground biomass, and residual P in soil than SSP. STR-AHt does not improve the STR results. The poor correlation observed between soil incubation and plant trials highlights the role of the rhizosphere in testing the fertilizer efficiency of STR. Mechanistic assays indicate the key role of rhizosphere pH. Finally, molecular modeling reveals a higher stabilization of STR with AHt, which could reduce P release decreasing the fertilizing potential of STR-AHt, as observed in the pot trials.


Assuntos
Fertilizantes , Substâncias Húmicas , Fosfatos , Solo , Solanum lycopersicum , Estruvita , Fertilizantes/análise , Solo/química , Substâncias Húmicas/análise , Estruvita/química , Fosfatos/química , Solanum lycopersicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Hordeum/química , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Concentração de Íons de Hidrogênio , Fósforo/química , Fósforo/análise , Fósforo/metabolismo , Rizosfera , Biomassa
7.
Environ Sci Technol ; 58(39): 17304-17312, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350656

RESUMO

Calcium is commonly the most abundant element in fire residues and its speciation largely determines the geochemical properties of fire residues and their effects on postfire soil chemistry. To explore the effects of biomass composition and fire conditions on ash Ca speciation, this study characterizes the speciation of Ca in charcoal and ash samples that were derived from different plant compartments and thermal conditions, using Ca K-edge X-ray absorption near edge spectroscopy. Results showed that biomass contains abundant organic Ca complexes, which were mineralized into fairchildite and calcite after heating at 450 to 600 °C and then CaO, as temperature increased to 750 °C. Apatite could be an abundant Ca species in fire residues if the Ca/P molar ratio of the biomass is small (<2). The mineralization of organic Ca to the identified Ca minerals during burning was negligibly affected by the oxygen level. Calcium speciation in prescribed fire residues resembled that of biomass ash burned at 550 °C with similar Ca/P molar ratios. Batch experiments showed that macronutrients (Ca, Mg, K, and P) were differentially released, as a result of different solubility of minerals in ashes and reprecipitation of minerals. The aqueous solubility of Ca, Mg, and P decreased as pH increased from 5 to 9, while K showed no pH dependency and was almost completely soluble. Results from this study improve our understanding of the chemistry of fire residues and their geochemical behaviors, which can help evaluate the impact of fire on postfire soil properties and macronutrient cycling.


Assuntos
Biomassa , Cálcio , Incêndios , Cálcio/química , Nutrientes , Carvão Vegetal/química , Solo/química , Solubilidade , Minerais/química
8.
Sci Rep ; 14(1): 22813, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353969

RESUMO

The primary cause of anemia worldwide is due to poor diet and iron deficiency. Iron (Fe) enriched yeast can be the most effective way to manage anemia because of the capability for biotransformation of mineral to organic and bioavailable iron. To overcome the low richness of yeast, the use of siderophore as cellular iron carriers is a new approach. In this research, for the first time the potential of siderophore in increasing the Fe enrichment of Saccharomyces boulardii (S. boulardii), which is important because of its probiotic properties and resistance to different stresses, has been investigated to produce of potential iron supplements. For this purpose, siderophore was produced by Pseudomonas aeruginosa (P. aeruginosa). Siderophore impact, along with ten other independent process variables, has been studied on the efficiency of iron biotransformation by the Plackett-Burman design (PBD). The results showed that the highest biotransformation yield was 17.77 mg Fe/g dry cell weight (DCW) in the highest biomass weight of 9 g/l. Iron concentration is the most important variable, with contributions of 46% and 70.79% for biomass weight and biotransformation, respectively, followed by fermentation time, agitation speed, and KH2PO4 concentration. But increasing the level of siderophore and zinc led to a significant negative effect. siderophore inefficiency may be attributed to the absence of membrane receptors for pyoverdine (Pvd) and pyochelin (Pch) siderophores. Also, the steric hindrance of the cell wall mannan, the stickiness and sediment ability of the yeast, can create limitations in the absorption of elements. Such yeast can be used as a potential source of iron even for vegetarians and vegans in the form of medicinal and fortified food products to improve the treatment of anemia. It is recommended that further research be focused on increasing the iron enrichment of yeast by overcoming the structural barrier of the cell wall, investigating factors affecting membrane permeability and iron transport potential of other types of siderophores.


Assuntos
Ferro , Saccharomyces boulardii , Sideróforos , Sideróforos/metabolismo , Ferro/metabolismo , Saccharomyces boulardii/metabolismo , Pseudomonas aeruginosa/metabolismo , Biomassa , Fermentação , Biotransformação
9.
Braz J Biol ; 84: e286941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39230086

RESUMO

Seed priming with biostimulant for soybean is a promising practice contributing positively to the physiological quality and vigor of seedlings, but there are little studies regarding protocols of bioinputs, such as Ascophyllum nodosum L. seaweed extract. We aimed to evaluate the effect of doses of A. nodosum macroalgae in seed priming and its impact on germination and seedling vigor of soybean. Seeds were subjected to priming with A. nodosum extract (ANE) at doses of 0, 1, 2, 3, 4, and 5 mL kg seed-1 during 15 min. Priming with ANE did not influence the first count and seed germination. Soybean seedlings from priming with 5 mL kg-1 ANE showed higher growth and shoot and root dry biomass. We observed increase 18% for shoot dry matter with priming of 5 mL kg-1 ANE compared to untreated seeds. The responses were variable for the emergence speed index in function ANE and did not influence the photochemical processes in photosystem II. Seed priming with ANE contributed in higher chlorophyll index. ANE showed a biostimulant effect on soybean seedlings, providing better growth and biomass characteristics, being promising in seed priming, but further studies are suggested in order to increase information regarding its use protocol for soybean.


Assuntos
Ascophyllum , Germinação , Glycine max , Plântula , Sementes , Ascophyllum/química , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Germinação/fisiologia , Germinação/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Biomassa , Alga Marinha/fisiologia , Extratos Vegetais/farmacologia , Clorofila/análise
10.
Arch Microbiol ; 206(10): 392, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230673

RESUMO

Numerous works have reported that magnetic fields serve as signals capable of influencing microbial metabolism. However, little is known about the effect of magnetic field on erythritol production by the model microorganism Yarrowia lipolytica (Y. lipolytica). Therefore, we investigated the effect of low-frequency alternating magnetic fields (LF-AMF) with different magnetic field intensities (0-1.5 mT) and different magnetic field treatment times (1-10 days) on the production of erythritol by Y. lipolytica -JZ204. The optimal treatment condition was 0.5 mT for 8 days. As a result, a maximal erythritol yield was achieved 63.74 g/L, the biomass was reached 37 g/L, and the specific erythritol yield per unit of biomass was 1.7227 g/g, which were 60.72%, 32.09%, and 24.85% higher than the control, respectively. We investigated the internal mechanism of magnetic fields impact by using transcriptomics and RT-qPCR technology. This study demonstrated the effectiveness of LF-AMF in enhancing erythritol production by Y. lipolytica JZ-204, providing insights for the application of magnetic field in assisting microbial fermentation and improving the synthesis of beneficial products.


Assuntos
Eritritol , Campos Magnéticos , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Yarrowia/crescimento & desenvolvimento , Eritritol/metabolismo , Eritritol/biossíntese , Fermentação , Biomassa
11.
World J Microbiol Biotechnol ; 40(10): 318, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39261393

RESUMO

Two strains of Yarrowia lipolytica (CBS 2075 and DSM 8218) were first studied in bioreactor batch cultures, under different controlled dissolved oxygen concentrations (DOC), to assess their ability to assimilate aliphatic hydrocarbons (HC) as a carbon source in a mixture containing 2 g·L-1 of each alkane (dodecane and hexadecane), and 2 g·L-1 hexadecene. Both strains grew in the HC mixture without a lag phase, and for both strains, 30 % DOC was sufficient to reach the maximum values of biomass and lipids. To enhance lipid-rich biomass and enzyme production, a pulse fed-batch strategy was tested, for the first time, with the addition of one or three pulses of concentrated HC medium. The addition of three pulses of the HC mixture (total of 24 g·L-1 HC) did not hinder cell proliferation, and high protease (> 3000 U·L-1) and lipids concentrations of 3.4 g·L-1 and 4.3 g·L-1 were achieved in Y. lipolytica CBS 2075 and DSM 8218 cultures, respectively. Lipids from the CBS 2075 strain are rich in C16:0 and C18:1, resembling the composition of palm oil, considered suitable for the biodiesel industry. Lipids from the DSM 8218 strain were predominantly composed of C16:0 and C16:1, the latter being a valuable monounsaturated fatty acid used in the pharmaceutical industry. Y. lipolytica cells exhibited high intrinsic surface hydrophobicity (> 69 %), which increased in the presence of HC. A reduction in surface tension was observed in both Y. lipolytica cultures, suggesting the production of extracellular biosurfactants, even at low amounts. This study marks a significant advancement in the valorization of HC for producing high-value products by exploring the hydrophobic compounds metabolism of Y. lipolytica.


Assuntos
Alcanos , Alcenos , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos , Meios de Cultura , Yarrowia , Yarrowia/crescimento & desenvolvimento , Yarrowia/metabolismo , Alcanos/metabolismo , Reatores Biológicos/microbiologia , Meios de Cultura/química , Alcenos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Lipídeos/biossíntese , Lipídeos/análise , Oxigênio/metabolismo , Metabolismo dos Lipídeos
12.
Microb Cell Fact ; 23(1): 247, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261831

RESUMO

Biofuel can be generated by different organisms using various substrates. The green alga Chlorococcum humicola OQ934050 exhibited the capability to photosynthesize carbonate carbon, maybe via the activity of carbonic anhydrase enzymes. The optimum treatment is C:N ratio of 1:1 (0.2 mmoles sodium carbonate and 0.2 mmoles sodium nitrate) as it induced the highest dry mass (more than 0.5 mg.mL-1). At this combination, biomass were about 0.2 mg/mL-1 carbohydrates, 0.085 mg/mL-1 proteins, and 0.16 mg/mL-1 oil of this dry weight. The C/N ratios of 1:1 or 10:1 induced up to 30% of the Chlorococcum humicola dry mass as oils. Growth and dry matter content were hindered at 50:1 C/N and oil content was reduced as a result. The fatty acid profile was strongly altered by the applied C.N ratios. The defatted leftovers of the grown alga, after oil extraction, were fermented by a newly isolated heterotrophic bacterium, identified as Bacillus coagulans OQ053202, to evolve hydrogen content as gas. The highest cumulative hydrogen production and reducing sugar (70 ml H2/g biomass and 0.128 mg/ml; respectively) were found at the C/N ratio of 10:1 with the highest hydrogen evolution efficiency (HEE) of 22.8 ml H2/ mg reducing sugar. The optimum treatment applied to the Chlorococcum humicola is C:N ratio of 1:1 for the highest dry mass, up to 30% dry mass as oils. Some fatty acids were induced while others disappeared, depending on the C/N ratios. The highest cumulative hydrogen production and reducing sugar were found at the C/N ratio of 10:1.


Assuntos
Bacillus , Biocombustíveis , Biomassa , Carbonatos , Hidrogênio , Nitratos , Hidrogênio/metabolismo , Bacillus/metabolismo , Nitratos/metabolismo , Carbonatos/metabolismo , Fermentação , Clorófitas/metabolismo , Clorófitas/crescimento & desenvolvimento , Fotossíntese , Ácidos Graxos/metabolismo
13.
Anal Chim Acta ; 1327: 343157, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39266062

RESUMO

BACKGROUND: Lignocellulosic biomass-based derivatives coupled with surface-enhanced Raman spectroscopy (SERS) technology have emerged as an appealing and indispensable tool in food safety and environmental monitoring for rapidly detecting trace contaminants like pesticide residues. The membrane material, serving as a substrate, ensures both sampling flexibility and test accuracy by directing the diffusion-adsorption process of the molecules. However, the existing membrane substrates, critical for the practical application of SERS, suffer from issues such as costly, intricate fabrication procedures, or restricted detection capabilities. RESULTS: Herein, we present a flexible, transparent, and biodegradable cellulose acetate membrane with gold nanoparticles (AuNPs) uniformly embedded, fabricated using a simple scraping method. This membrane achieved a limit of detection (LOD) of thiram pesticide in water at 10-8 g mL-1. The unique optical transparency of the substrates allowed for in-situ detection on surfaces, with an LOD of thiram reaching 30 ng cm-2. SIGNIFICANCE: Furthermore, SERS substrates made from corn stover-derived cellulose acetate enable the detection of various contaminants, highlighting their cost-effectiveness and eco-friendliness because of the abundance and low environmental impact of the raw materials.


Assuntos
Biomassa , Celulose , Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Análise Espectral Raman/métodos , Ouro/química , Nanopartículas Metálicas/química , Celulose/química , Celulose/análogos & derivados , Tiram/análise , Membranas Artificiais , Estudos de Viabilidade , Limite de Detecção , Propriedades de Superfície , Poluentes Químicos da Água/análise
14.
Sci Rep ; 14(1): 20703, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237637

RESUMO

This work uses response surface methodology (RSM) to study the co-cultivation of symbiotic indigenous wastewater microalgae and bacteria under different conditions (inoculum ratio of bacteria to microalgae, CO2, light intensity, and harvest time) for optimal bioenergy feedstock production. The findings of this study demonstrate that the symbiotic microalgae-bacteria culture not only increases total microalgal biomass and lipid productivity, but also enlarges microalgal cell size and stimulates lipid accumulation. Meanwhile, inoculum ratio of bacteria to microalgae, light intensity, CO2, and harvest time significantly affect biomass and lipid productivity. CO2 concentration and harvest time have significant interactive effect on lipid productivity. The response of microalgal biomass and lipid productivity varies significantly from 2.1 × 105 to 1.9 × 107 cells/mL and 2.8 × 102 to 3.7 × 1012 Total Fluorescent Units/mL respectively. Conditions for optimum biomass and oil accumulation are 100% of inoculation ratio (bacteria/microalgae), 3.6% of CO2 (v/v), 205.8 µmol/m2/s of light intensity, and 10.6 days of harvest time. This work provides a systematic methodology with RSM to explore the benefits of symbiotic microalgae-bacteria culture, and to optimize various cultivation parameters within complex wastewater environments for practical applications of integrated wastewater-microalgae systems for cost-efficient bioenergy production.


Assuntos
Bactérias , Biocombustíveis , Biomassa , Dióxido de Carbono , Microalgas , Águas Residuárias , Águas Residuárias/microbiologia , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Biocombustíveis/microbiologia , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Técnicas de Cocultura/métodos , Simbiose , Lipídeos/biossíntese , Lipídeos/análise
15.
PLoS One ; 19(9): e0308083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39240850

RESUMO

The Canary Current Large Marine Ecosystem (CCLME) is one of the most productive Large Marine Ecosystems worldwide. Assessing the abundance, biomass and distribution of zooplankton in the southern part of this system, off the coast of West Africa, remains challenging due to limited sampling efforts and data availability. However, zooplankton is of primary importance for pelagic ecosystem functioning. We applied an inversion method with combined analysis of acoustic and biological data for copepod discrimination using a bi-frequency (38 and 120 kHz) approach. Large copepods with equivalent spherical radii > 0.5 mm were identified using differences in the mean volume backscattering strength (MVBS). Regarding abundance measured by net sampling, copepods strongly dominated the zooplankton community and the large fraction account for 18%. This estimate correlated significantly with MVBS values that were obtained using an inverse algorithm. We confirmed the utility of using 38 kHz for large copepod detection. An epipelagic biomass of large copepod was estimated at 120-850 mg m-2 in March during upwelling season. It is worth noting that this estimation likely underestimates the true biomass due to inherent uncertainties associated with the measurement method. We recommend future investigations in the interest of using only nighttime data to improve the sampling pattern, particularly on the upper part of the water column (< 10 m) as well as on the shallow part of the continental shelf (< 20 m depth) not covered by fisheries vessel. Nevertheless, such high copepod biomass supports high fish production underlining the key role of copepod in the CCLME. Our results open the way to the analysis of the fluctuation and trend of copepod biomass, along with three decades of fisheries acoustics data available in the region. This helps to determine ecosystem changes, particularly under climate change, and to investigate the role of copepods in the southern CCLME carbon pump at the fine scale.


Assuntos
Acústica , Biomassa , Copépodes , Ecossistema , Zooplâncton , Animais , Copépodes/fisiologia , Copépodes/crescimento & desenvolvimento , Zooplâncton/fisiologia , África Ocidental , Estações do Ano
16.
Sci Rep ; 14(1): 20866, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242668

RESUMO

Thorium biosorption by a green microalga, Chlorella Vulgaris, was studied in a stirred batch reactor to investigate the effect of initial solution pH, metal ion concentration, biomass dosage, contact time, kinetics, equilibrium and thermodynamics of uptake. The green microalgae showed the highest Th adsorption capacity at 45 °C for the solution with a thorium concentration of 350 mg L-1 and initial pH of 4. The amount of uptake raised from 84 to 104 mg g-1 as the temperature increased from 15 to 45 °C for an initial metal concentration of 75 mg L-1 at pH 4. Transformation Infrared Spectroscopy (FTIR) was employed to characterize the vibrational frequency changes for peaks related to surface functional groups. Also, the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to determine the morphological changes and elemental analysis of the biosorbent before and after the sorption process. The Langmuir isotherm was in perfect agreement with the equilibrium empirical data of thorium biosorption and the highest sorption capacity of the Chlorella Vulgaris microalgae was determined as 185.19 mg g-1. Also, the results of kinetic studies show that the thorium biosorption process follows a pseudo-second-order kinetic model. The negative value of ΔG0 indicates spontaneity and the positive values of ΔH0 indicate the endothermic nature of the adsorption process.


Assuntos
Chlorella vulgaris , Microalgas , Tório , Chlorella vulgaris/metabolismo , Tório/metabolismo , Tório/química , Adsorção , Microalgas/metabolismo , Cinética , Concentração de Íons de Hidrogênio , Biomassa , Termodinâmica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química
17.
Sci Rep ; 14(1): 21929, 2024 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304737

RESUMO

One of the main abiotic stresses that affect plant development and lower agricultural productivity globally is salt in the soil. Organic amendments, such as compost and biochar can mitigate the opposing effects of soil salinity (SS) stress. The purpose of this experiment was to look at how tomato growth and yield on salty soil were affected by mineral fertilization and manure-biochar compost (MBC). Furthermore, the study looked at how biochar (organic amendments) work to help tomato plants that are stressed by salt and also a mechanism by which biochar addresses the salt stress on tomato plants. Tomato yield and vegetative growth were negatively impacted by untreated saline soil, indicating that tomatoes are salt-sensitive. MBC with mineral fertilization increased vegetative growth, biomass yield, fruit yield, chlorophyll, and nutrient contents, Na/K ratio of salt-stressed tomato plants signifies the ameliorating effects on tomato plant growth and yield, under salt stress. Furthermore, the application of MBC with mineral fertilizer decreased H2O2, but increased leaf relative water content (RWC), leaf proline, total soluble sugar, and ascorbic acid content and improved leaf membrane damage, in comparison with untreated plants, in response to salt stress. Among the composting substances, T7 [poultry manure-biochar composting (PBC) (1:2) @ 3 t/ha + soil-based test fertilizer (SBTF)] dose exhibited better-improving effects on salt stress and had maintained an order of T7 > T9 > T8 > T6 in total biomass and fruit yield of tomato. These results suggested that MBC might mitigate the antagonistic effects of salt stress on plant growth and yield of tomatoes by improving osmotic adjustment, antioxidant capacity, nutrient accumulation, protecting photosynthetic pigments, and reducing ROS production and leaf damage in tomato plant leaves.


Assuntos
Esterco , Fotossíntese , Estresse Salino , Solo , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Solo/química , Compostagem/métodos , Osmorregulação , Fertilizantes , Salinidade , Homeostase , Clorofila/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Biomassa , Carvão Vegetal
18.
Glob Chang Biol ; 30(9): e17516, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39311643

RESUMO

Forests play a crucial role in global carbon cycling by absorbing and storing significant amounts of atmospheric carbon dioxide. Although boreal forests contribute to approximately 45% of the total forest carbon sink, tree growth and soil carbon sequestration are constrained by nutrient availability. Here, we examine if long-term nutrient input enhances tree productivity and whether this leads to carbon storage or whether stimulated microbial decomposition of organic matter limits soil carbon accumulation. Over six decades, nitrogen, phosphorus, and calcium were supplied to a Pinus sylvestris-dominated boreal forest. We found that nitrogen fertilization alone or together with calcium and/or phosphorus increased tree biomass production by 50% and soil carbon sequestration by 65% compared to unfertilized plots. However, the nonlinear relationship observed between tree productivity and soil carbon stock across treatments suggests microbial regulation. When phosphorus was co-applied with nitrogen, it acidified the soil, increased fungal biomass, altered microbial community composition, and enhanced biopolymer degradation capabilities. While no evidence of competition between ectomycorrhizal and saprotrophic fungi has been observed, key functional groups with the potential to reduce carbon stocks were identified. In contrast, when nitrogen was added without phosphorus, it increased soil carbon sequestration because microbial activity was likely limited by phosphorus availability. In conclusion, the addition of nitrogen to boreal forests may contribute to global warming mitigation, but this effect is context dependent.


Assuntos
Carbono , Fertilizantes , Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Fósforo/metabolismo , Solo/química , Nitrogênio/metabolismo , Fertilizantes/análise , Carbono/metabolismo , Sequestro de Carbono , Biomassa , Taiga , Pinus sylvestris/crescimento & desenvolvimento , Pinus sylvestris/metabolismo , Pinus sylvestris/microbiologia , Florestas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Cálcio/metabolismo , Cálcio/análise
19.
J Hazard Mater ; 479: 135754, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243541

RESUMO

The deposition of biomass-burning smoke water-soluble organic matter (BBS-WSOM) significantly affects the environmental behavior of heavy metals in aqueous environments. However, the interactions between BBS-WSOM and heavy metals at the molecular level remain unknown. This study combined FT-ICR-MS, fluorescence spectrum, FTIR, and two-dimensional correlation spectroscopy to anatomize the molecular characteristics of BBS-WSOM binding with Cd(II). The results show that CHO and CHOP compounds were responsible for the fluorescence response of BBS-WSOM at Ex: 225 nm and 275 nm/Em: 325 nm, and abundant proteins or CHON compounds were responsible for the fluorescence response of BBS-WSOM at Ex: 225-250 nm/Em: 350-450 nm and Ex: 300-350 nm/Em: 350-450 nm, which was very different from the fluorescence molecules in natural organic matters. Fluorescence change after Cd(II) addition indicated that CHOP and CHOS compounds enhanced BBS-WSOM binding with Cd(II). Differently, the CHON compounds could weaken the binding of other compounds with Cd(II). Different compounds binding with Cd(II) generally followed the order: CHON/CHOS compounds>CHOP compounds>CHO compounds, and the chemical groups binding with Cd(II) generally followed the prioritization: -COO-> -NH/SO>P = O/P-O>aromatic ring>CO>C-OH of phenol/alcohol>C-O-C. This study provides a profound insight into the interaction between BBS-WSOM and Cd(II) at the molecular level.


Assuntos
Biomassa , Cádmio , Fumaça , Cádmio/química , Fumaça/análise , Espectrometria de Fluorescência , Solubilidade , Água/química , Compostos Orgânicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas
20.
Sci Rep ; 14(1): 21769, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39300152

RESUMO

The growing concern and limitations for existing lubricants have driven the need for biolubricants, extensively proposed as the most suitable and sustainable lubricating oils. Biolubricant refers to lubricants that quickly biodegrade and are non-toxic to humans and aquatic habitats. Over the last decade, there has been a significant increase in the production of biolubricants due to the rising demand for replacing petroleum-based lubricants with those derived from renewable sources like vegetable oils and lipase that are used in various applications. In this study biodiesel (FAME) produced from blending animal fats and waste cooking was used as a raw material with ethylene glycol for biolubricant production using a transesterification reaction in the presence of calcium oxide which considers the newest and novel part as there is no production of biolubricant from animal fats and waste cooking oil in previous researches. The reaction parameters of biolubricant production were optimized using response surface methodology (RSM) with the aid of Box Behnken Design (BBD) to study the effect of independent variables on the yield of biolubricant. These variables are temperature ranging from (100-150 °C), reaction time ranging from 1 to 4 h, and FAME (Fatty Acid Methyl Ester) to alcohol molar ratio ranging from (2:1) to (4:1). The highest biolubricant yield is 91.56% at a temperature of 141 °C, a FAME/alcohol molar ratio of 2:1, and 3.3 h. Various analyses were performed on the produced biolubricant at the optimum conditions. The results include a pour point of -9 °C, a flash point of 192 °C, a kinematic viscosity at 40 °C of 10.35 cSt, a viscosity index of 183.6, an ash content of 0.76 wt.%, and a carbon residue of 1.5 wt.%, comparing favorably with the ISO VG 10 standard. The production process of biolubricant was simulated with Aspen Plus version 11 using a Non-Random Two-Liquid (NRTL) fluid package. The simulation results indicated that the production process can be applied on an industrial scale. Economic analysis was performed on the biolubricants production plant. The total capital investment was $12.7 M with a payback period of 1.48 years and an internal rate of return (IRR) of 67.5% indicating the suitability and profitability of the biolubricant production.


Assuntos
Biocombustíveis , Biomassa , Biocombustíveis/análise , Lubrificantes/química , Esterificação , Animais , Etilenoglicol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA