Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 18(10): 1386-1393, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651966

RESUMO

BACKGROUND: A glioblastoma is a primary CNS tumor that is more aggressive and lethal than other brain tumors. Its location, rapid proliferation, invasive growth, angiogenesis and immunosuppression are the main factors that limit its treatment, making it a major challenge to neuro-oncology. OBJECTIVE: This study investigated the in vitro effects of the alkaloid dihydrochelerythrine (DHC), which is extracted from Zanthoxylum stelligerum, on the viability, proliferation, cell death and ß-catenin, NFκB, STAT3/pSTAT3 and interleukins roles. METHOD: In vitro experimental models of human (U251 and GL-15) and murine (C6) glioblastoma cells were cultured in the presence of DHC at increasing concentrations for MTT assay and exclusion trypan blue dye to determine EC50. Afterward, C6 and U251 cells were treated with 100 µM DHC or DMSO 0.1% for cell cycle, annexin and expression of ß-catenin/NFκB/STAT3/pSTAT3 by flow cytometry or immunofluorescence. Interleukin quantification was made by Cytometric Bead Array. RESULTS: A significant decrease was observed in C6 and U251 cell viability in a time and dose-dependent manner. GL-15 cell viability decreased only when treated with 200 µM DHC. This maximum concentration affected neither astrocytes nor microglia viability. A cytostatic effect of DHC was observed in C6 and U251 cells after 48 h of 100 µM DHC treatment. After 72 h of DHC treatment, C6 presented 80% of annexin-V+ cells compared to 10% of annexin-V+ U251 cells. C6 cells demonstrated significant high levels of NFκ B and ß-catenin cytoplasmic fraction. Additionally, DHC treatment resulted in higher significant levels of IL-6 than did other interleukins and STAT3 up-regulation in U251 cells. CONCLUSION: These results demonstrate that DHC acts as a chemosensitizing agent selective for glioma cells not affecting non-tumor cells. Considering tumor heterogeneity, DHC demonstrated an anti-cancer potential to activate different cell death pathways. DHC demonstrated could be used for chemotherapy and immunotherapy applications in glioblastomas in the future.


Assuntos
Antineoplásicos/farmacologia , Benzofenantridinas/farmacologia , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofenantridinas/síntese química , Benzofenantridinas/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Interleucina-6/metabolismo , Camundongos , Conformação Molecular , NF-kappa B/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , beta Catenina/metabolismo
2.
Eur J Med Chem ; 138: 1-12, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28641156

RESUMO

A series of C(6)-substituted dihydrobenzo[c]phenanthridines were synthesized by mild copper-catalyzed C(sp3)-H functionalization of dihydrosanguinarine (2) and dihydrochelerythrine (3) with certain nucleophiles selected to enhance cytotoxicity against human breast, colorectal, and prostate cancer cell lines. We also investigated the cytotoxicity of our previously reported C(6)-functionalized N-methyl-5,6-dihydrobenzo[c]phenanthridines 1a-1e to perform structure-activity relationship (SAR) studies. Among the target compounds, five ß-aminomalonates (1a, 1b, 2a, 2b, and 3b), one α-aminophosphonate (2c), and one nitroalkyl derivative (2h) exhibited half maximal inhibitory concentration (IC50) values in the range of 0.6-8.2 µM. Derivatives 1b, 2b and 2h showed the lowest IC50 values, with 2b being the most potent with values comparable to those of the positive control doxorubicin. On the basis of their IC50 values, derivatives 1a, 1b, 2a, 2b, 2h, and 3b were selected to evaluate the apoptotic PC-3 cell death at 10 µM by flow cytometry using propidium iodide and fluorescein isothiocyanate-conjugated Annexin V dual staining. The results indicated that the cytotoxic activity of the tested compounds in PC-3 cells is due to the induction of apoptosis, with 1a and 2h being the most active (55% of early apoptosis induction). Our preliminary SAR study showed that the incorporation of specific malonic esters, dialkyl phosphites and nitro alkanes on scaffolds 1-3 significantly enhanced their cytotoxic properties. Moreover, it appears that the electron donating 7,8-methylenedioxy group allowed derivatives of 2 to exhibit higher cytotoxicity than derivatives of 1 and 3. The present results suggest that derivatives 2b and 2h may be considered as potential lead compounds for the development of new anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Benzofenantridinas/farmacologia , Isoquinolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzofenantridinas/síntese química , Benzofenantridinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA