Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 12: 252, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23131170

RESUMO

BACKGROUND: Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. RESULTS: A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched ß-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu.Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 µg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. CONCLUSION: AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.


Assuntos
Antibacterianos/metabolismo , Bacillus/genética , Bacillus/metabolismo , Lipopeptídeos/genética , Lipopeptídeos/metabolismo , Bactérias Redutoras de Enxofre/efeitos dos fármacos , Tensoativos/metabolismo , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus/isolamento & purificação , Brasil , Membrana Celular/ultraestrutura , Cromatografia , DNA Bacteriano/química , DNA Bacteriano/genética , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Peso Molecular , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/ultraestrutura , Tensoativos/química , Tensoativos/isolamento & purificação , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA